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The signal detection problem described above yields the joint pdfs
for r1 and �1 according to (23) and (24) under H0 and H1, respec-
tively. For the case when�!=!c < 1 the narrow-band approximation
holds almost perfectly which results in a joint pdf with hardly any �1
dependence. When �!=!c decreases further, the marginal pdfs of r1
will asymptotically approach Rayleigh and Rice underH0 andH1, re-
spectively. This is depicted in Figs. 4 and 5, where the joint pdf for r1
and �1 under H0 and H1, respectively, is presented for d = 3 and
�!=!c = 0:6. For the case when d = 3 and �!=!c > 1, the
narrow-band approximation is not satisfied, which is manifested in a
�1 dependence. In Figs. 6 and 7, the joint pdfs for r1 and �1 underH0

and H1, respectively, for d = 4 and�!=!c = 2 show that the �1 de-
pendence is evident under both hypotheses. By studying Figs. 6 and 7,
it is clear that the probability of signals with �1 in the region of ��=2
or �=2 is dominating.

This leads to the conclusion, see (12), that the in-phase component
Ac is contributing the most toward detecting the signals, which ex-
plains why the P �

E curves in Fig. 2 converge to the same value for large
bandwidth ratios, i.e., �!=!c > 5.

V. CONCLUSIONS

An analytical series expansion solution to the noncoherent detection
problem has been presented. The resulting detector shows a significant
advantage over the conventional noncoherent detector in the case of
signal detection when the classical narrow-band approximation does
not hold. This was illustrated by means of a transient signal detection
example. In addition to the analytical solution presented, two pdfs for
the in-phase and quadrature components, jointly expressed in polar co-
ordinates, were derived. The radial marginal of these pdfs reduces to
the classical Rayleigh and Rice pdf when the narrow-band approxima-
tion holds.

The application of this new detector is still to be further developed
but since the noncoherent detector has been and is still widely used [6],
[7], the potential need for an analytical solution to the noncoherent de-
tection problem could be widespread, especially in the areas of radar,
sonar, and nondestructive testing where the narrow-band approxima-
tion is not always satisfied.
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A New Estimation Error Lower Bound for Interruption
Indicators in Systems With Uncertain Measurements

Ilia Rapoport and Yaakov Oshman, Senior Member, IEEE

Abstract—Optimal mean-square error estimators of systems with in-
terrupted measurements are infinite dimensional, because these systems
belong to the class of hybrid systems. This renders the calculation of
a lower bound for the estimation error of the interruption process
in these systems of particular interest. Recently it has been shown
that a Cramér–Rao-type lower bound on the interruption process es-
timation error is trivially zero. In the present work, a nonzero lower
bound for a class of systems with Markovian interruption variables
is proposed. Derivable using the well-known Weiss–Weinstein bound,
this lower bound can be easily evaluated using a simple recursive
algorithm. The proposed lower bound is shown to depend on a measure
of the interruption chain transitional determinism, the measurement
noise sensitivity to interruption process switchings, and a measure of
the system’s state estimability. In some cases, identified in this corre-
spondence, the proposed bound is tight. The use of the lower bound
is illustrated via a simple numerical example.

Index Terms—Estimation error lower bound, fault detection and isola-
tion, hybrid systems.

I. INTRODUCTION

Modern multisensor applications, such as navigation and target
tracking systems, require the fusion of data acquired by a large
number of different sensors. In many situations these sensors might
be subjected to faults, either due to internal malfunctions, or be-
cause of external interferences. Typical examples of such scenarios
include intended (hostile) global positioning system (GPS) jamming
and spoofing, rate gyro misalignment due to input accelerations in
improperly balanced inertial navigation systems, and magnetometer
measurement errors, induced by magnetism-generating devices in the
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vicinity of the sensor. In view of present-day systems’ high accuracy
requirements, the problem of fault-tolerant filtering in multisensor
systems is of major importance.

A popular approach to the modeling and analysis of systems with
fault-prone sensors is based on using the framework of hybrid systems,
or systems with switching parameters [1]. In this approach, one of the
switching parameter values corresponds to the nominal system opera-
tion, whereas the others represent various fault situations [2], [3].

In systems with independent fault-prone sensors and fault-free dy-
namics, such as GPS receivers, the aforementioned model can be sim-
plified: the faults in different measurement channels can be modeled
as separate Markovian Bernoulli random processes, where “1” stands
for a fault situation and “0” stands for no fault situation. Since the state
vector is free of faults, these fault indicators, which are also referred to
as interruption variables [4], affect only the system measurements.

It is well known that the optimal mean-square error filtering
algorithm for hybrid systems, that provides the estimates of the state
vector and the switching parameters, requires infinite computation
resources [5]. Therefore, a variety of suboptimal techniques was
proposed [1], [4]–[8]. Since the estimates of the interruption variables
are suboptimal, it is of particular interest to obtain some measure of
their efficiency, e.g., a lower bound on their estimation error. The
most popular bound is the well-known Cramér–Rao lower bound
(CRLB) [9, p. 84]. Unfortunately, this bound cannot be directly
calculated for the estimation error of the interruption process, because
the distribution of the interruption variables is discrete and, therefore,
does not satisfy the CRLB’s regularity conditions [9, p. 72].

A CRLB-type lower bound for a class of systems with fault-prone
measurements has been recently presented in [10]. Lower bounds for
both the state and the Markovian interruption variables of the system
were derived, based on the sequential version of the CRLB for gen-
eral nonlinear systems [11]. To facilitate the calculation of the CRLB
for this class of systems, the discrete distribution was approximated
by a continuous one and the lower bound was obtained via a limiting
process applied to the approximating system. The results of [10] facil-
itate a relatively simple calculation of a nontrivial lower bound for the
state vector of systems with fault-prone measurements. However, these
results also indicate that the CRLB-type lower bound for the interrup-
tion process variables is trivially zero.

Unlike the CRLB, the Weiss–Weinstein lower bound [12] is essen-
tially free from regularity conditions and, therefore, can be applied to
systems with interrupted measurements. However, this bound requires
to process the data in a batch form, rendering its application to dynamic
systems rather cumbersome.

The present work derives a nonzero lower bound on the interruption
variable estimation errors in systems with independent fault-prone
sensors and fault-free dynamics. The relation between this lower
bound and the Weiss–Weinstein bound is discussed. The proposed
lower bound can be evaluated using a simple recursive algorithm,
and is shown to depend on 1) a measure of the interruption chain
transitional determinism, 2) the measurement noise sensitivity to
interruption process switchings, and 3) a measure of the system’s state
estimability. In some cases, identified in this correspondence, this
lower bound is tight.

The remainder of this correspondence is organized as follows. The
system model is defined in Section II. Several preliminary results
are presented in Section III. The main result of this correspondence,
namely, the lower bound on the interruption process estimation error
variances, is presented and derived in Section IV and then discussed in
Section V. A simple numerical example illustrating the computation
and use of the proposed lower bound is presented in Section VI.
Concluding remarks are offered in the last section. For presentation
clarity, the notational convention of [9] is adopted, according to which

lower case and upper case letters are used to denote random variables
and their realizations, respectively.

II. PROBLEM FORMULATION

Consider the system with the following dynamics:

xk = �kxk�1 +Gkwk; x 2 n
; k = 1; 2; . . . (1)

and the following measurement model:

yk= y
(1)
k

T
; y

(2)
k

T
; . . . ; y

(N)
k

T T

; y
(i)
k 2 m

; i=1; 2; . . . ; N

(2)
where y(i)k , which denotes the measurement of the ith measurement
channel, is given, in the most general form, by

y
(i)
k = H

(i)
k (

(i)
k )xk + v

(i)
k ; i = 1; 2; . . . ; N: (3)

Here fwkg and fv(i)k g are Gaussian white sequences with

wk � N 0; Qk and v
(i)
k � N 0; R

(i)
k (

(i)
k )

where R(i)
k (

(i)
k ) > 0. The initial state is a random vector satisfying

x0 � N (0;�0). Each interruption process f(i)k g1k=0 is assumed to
be a Markovian Bernoulli sequence, i.e., taking values of 0 and 1, with
the following initial and transition probabilities:

Prf(i)0 =1g = p
(i)
0 (4a)

Prf(i)k =1 j (i)k�1 = jg = P
(i)
1j (k j k � 1); j 2 f0; 1g: (4b)

Since f(i)k g1k=0 is a Bernoulli sequence, (3) can be rewritten without
loss of generality in the following form, that will be used in the sequel:

y
(i)
k = H

(i)
k + 

(i)
k �H

(i)
k xk + v

(i)
k ; i = 1; 2; . . . ; N (5)

where

H
(i)
k H

(i)
k (0) (6a)

�H
(i)
k H

(i)
k (1)�H

(i)
k (0): (6b)

The noise sequences fwkg1k=1 and fv(i)k g1k=1, the initial state vector
x0, and the interruption sequences f(i)k g1k=0 are assumed to be mu-
tually independent. For notational simplicity, the explicit time depen-
dence is suppressed in the sequel in all places where it is clear by con-
text.
The model defined above is applicable to a wide class of systems

in the area of fault detection and isolation. In these systems, the state
vector xk comprises two parts: the main part is associated with the
system dynamics and the secondary part is associated with the dy-
namics of the sensors when sensor faults occur. These fault states can
describe various kinds of sensors’ faulty behavior, e.g., measurement
biases, or additive faulty measurement noises (white or colored). The
interruption variables (i)k play a role of fault indicators. If the system
measurements are acquired at a low rate it can be also assumed that the
fault indicators at different time instants are independent.
The following definitions will be used in the sequel:

Yk y
T
1 ; y

T
2 ; . . . ; y

T
k

T

(7)

k 
(1)
k ; . . . ; 

(N)
k : (8)

Also, corresponding to (4a), the probability that the interruption
process of channel i takes the value 1 at time k is defined as

p
(i)
k Pr 

(i)
k = 1 : (9)

In addition, denote by ̂(i)
kjk any estimate of (i)k based onmeasurements

up to and including time k, and let �k denote the covariance matrix of
the state vector xk .
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The goal of this work is to derive a lower bound on the esti-
mation error variances of the interruption processes f

(i)
k g1k=1,

i = 1; 2; . . . ; N .

III. PRELIMINARY RESULTS

Before stating the main result of this correspondence, the following
lemma is stated, proved, and discussed. The following definitions are
used in the sequel. Let  be a Bernoulli random variable with Prf =
1g = p and let z be a measurement vector with conditional probability
density functions (pdf) pzj(Z j i), i 2 f0; 1g. Then, ̂(z) denotes
any estimate of  based on the measurements z and ̂opt denotes the
mean-square optimal estimate, i.e.,

̂opt E[ j z]: (10)

Finally, for notation simplicity, define

fi pzj(Z j i); i 2 f0; 1g: (11)

Lemma 3.1:

E (̂(z)�)2 p(1�p)

+1

�1

pzj(Z j 0)pzj(Z j 1)dZ

2

: (12)

Proof: Since the conditional expectation is the optimal estimate
in the mean-square sense

E (̂(z)� )2 E (̂opt � )2 : (13)

Now, using the smoothing property of the conditional expectation and
noting that  is a Bernoulli random variable yields

E (̂opt � )2 = E E (̂opt � )2 j z = E ̂opt � ̂
2
opt :

(14)
On the other hand,

̂opt = E [ j z] = Prf = 1 j zg =
f1p

f1p+ f0(1� p)
(15)

so that

̂opt � ̂
2
opt =

f1p

f1p+ f0(1� p)
�

f21 p
2

[f1p+ f0(1� p)]2

= p(1� p)
f1f0

[f1p+ f0(1� p)]2
: (16)

Therefore,

E ̂opt � ̂
2
opt = p(1� p)E

f1f0

[f1p+ f0(1� p)]2
: (17)

Notice that in the above expressions f1 and f0 are functions of the
random vector z. Now

E
f1f0

[f1p+ f0(1� p)]2
=

+1

�1

f1f0

[f1p+ f0(1� p)]2
pz(Z)dZ

=

+1

�1

f1f0

f1p+ f0(1� p)
dZ: (18)

Recall also that

+1

�1

(f1p+ f0(1� p))dZ =

+1

�1

pz(Z)dZ = 1: (19)

Using the Cauchy–Schwartz inequality yields

+1

�1

f1f0

f1p+ f0(1� p)
dZ

=

+1

�1

f1f0

f1p+ f0(1� p)

2

dZ

+1

�1

f1p+ f0(1� p)
2

dZ

+1

�1

f1f0

f1p+ f0(1� p)
f1p+ f0(1� p)dZ

2

=

+1

�1

f1f0dZ

2

=

+1

�1

pzj(Z j 1)pzj(Z j 0)dZ

2

(20)

and the Lemma follows upon combining (13), (14), (17), (18), and (20).

Remark 3.1: The lower bound presented in Lemma 3.1 can be al-
ternatively written as

E (̂(z)� )2
var[]

ed
(21)

where

d � ln

+1

�1

pzj(Z j 0)pzj(Z j 1)dZ (22)

is the Bhattacharyya distance between the distributions pzj(Z j 0) and
pzj(Z j 1) [9, p. 127]. Note also that the square root of the right-hand
side (RHS) of (12) is known in the literature as the Matushita error [13,
p. 23].

Corollary 3.1: The optimal estimator defined in (10) is efficient
with respect to the lower bound given in (12) iff one of the following
conditions is satisfied:

pzj(Z j 0)pzj(Z j 1) = 0; 8Z (23a)

pzj(Z j 0) = pzj(Z j 1); 8Z: (23b)

Proof: The equality in (20) (see the proof of Lemma 3.1) exists
iff there exists a number � such that

f1f0

f1p+ f0(1� p)
= �[f1p + f0(1� p)]; 8Z: (24)

Setting � = 0 yields the condition (23a). For � 6= 0 (24) gives

p
2
�f

2
1 + 2f0 p(1� p)�� 0:5 f1 + (1� p)2�f20 = 0: (25)

This equality holds only if

�p(1� p)
1

4
(26)
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in which case the following relations are obtained:

f1 =
f0
p2�

1

2
� �p(1� p)�

1

4
� �p(1� p) (27)

if p 6= 0 and

f1 = �f0 (28)

if p = 0. In both cases, f1 is proportional to f0. Finally, condition (23b)
follows from the fact that both f0 and f1 are pdf’s.

Remark 3.2: The result presented in the lemma is, in fact, a special
case of the well-known Weiss–Weinstein bound. To show this, recall
that the general form of this bound is [12]

E ( � ̂(z))2
E[ (z; )]2

E [ 2(z; )]
(29)

where

 (z; )
Ls(z;  + h; )� L1�s(z;  � h; );  2 G0

0;  =2 G0:
(30)

In (30), the likelihood function L(z; 1; 2) is defined as

L(Z; �1;�2)
pz;(Z;�1)

pz;(Z;�2)
(31)

and the set G0 is defined as

G0 f� j pz;(z;�) > 0 a.e. z 2 g: (32)

Now let h = 1, s = 0:5, and

pz;(Z;�) = pzj(Z j �)((1� p)�(�) + p�(�� 1)) (33)

where �(�) is Dirac’s delta function. This assumption yields G0 =
f0; 1g. Moreover

E[ (z; )] =

+1

�1

dZ

G

� (Z;�)pz;(Z;�)d�

=

+1

�1

dZ

+1

�1

� psz;(Z;� + h)p1�s
z; (Z;�)

� psz;(Z;�)p
1�s
z; (Z;�� h) d�

=

+1

�1

dZ

+1

�1

(�+h)psz;(Z;�+h)p
1�s
z; (Z;�)d�

�

+1

�1

dZ

+1

�1

�psz;(Z;�)p
1�s
z; (Z;�� h)d�

�

+1

�1

dZ

+1

�1

hpsz;(Z;� + h)p1�s
z; (Z;�)d�

= �

+1

�1

dZ

+1

�1

pzj(Z j � + 1)pzj(Z j �)

� p(� + 1)p(�)d�: (34)

But, according to (33)

p(� + 1)p(�) = (1� p)2�(� + 1)�(�) + p(1� p)�(�)2

+p(1� p)�(� + 1)�(�� 1) + p2�(�)�(�� 1): (35)

The last expression is zero for all � except � = 0. Therefore,

E[ (z; )] = � p(1� p)

+1

�1

pzj(Z j 1)pzj(Z j 0)dZ:

(36)
Similarly

E  2(z; )

=

+1

�1 G

pz;(Z;� + 1)

pz;(Z;�)
�

pz;(Z;�� 1)

pz;(Z;�)

2

� pz;(Z;�)dZd�

=

+1

�1 G

pz;(Z;� + 1) + pz;(Z;�� 1)

� 2 pz;(Z;� + 1)pz;(Z;�� 1) d�dZ: (37)

Using the following relations:

1

�1 G

pz;(Z;�+1)d�dZ

=

1

�1G

pzj(Z j �+1) (1�p)�(�+1)+p�(�) d�dZ=p (38)

1

�1 G

pz;(Z;��1)d�dZ

=

1

�1 G

pzj(Z j ��1) (1�p)�(��1)+p�(��2) d�dZ=1�p

(39)

and
1

�1 G

pz;(Z;� + 1)pz;(Z;�� 1)d�dZ

=

1

�1 G

pzj(Z j � + 1)pzj(Z j �� 1)

� (1� p)�(� + 1) + p�(�)

� (1� p)�(�� 1) + p�(�� 2)d�dZ = 0 (40)

yields

E  2(z; ) = 1: (41)

Substituting (36) and (41) into the Weiss-Weinstein bound (29) gives
(12).

IV. ESTIMATION ERROR LOWER BOUND

First, the new bound is derived for the special case of a white inter-
ruption process in the following lemma.

Lemma 4.1: Assume that in the system defined in Section II the
sequences f(i)k g1k=0 are white in the sense that the pairs ((i)k ; 

(i)
l )

are mutually independent for all k 6= l (notice that in this case P (i)
1j (k j

k� 1) = p
(i)
k where the left-hand side (LHS) probability is defined in

(4b) and the RHS probability is defined in (9)). Then, a lower bound on
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the estimation error variance of each interruption variable (i)k is given
by

E ̂
(i)
kjk � 

(i)
k

2

p
(i)
k 1� p

(i)
k L

(i)
R L

(i)
H (42)

where

L
(i)
R

det R
(i)
k (1)R

(i)
k (0)

det 1
2

R
(i)
k (1) +R

(i)
k (0)

(43a)

and

L
(i)
H

det ��1k +�H(i)T R
(i)
k (1)+R

(i)
k (0)

�1

�H(i)

�1

det�k
:

(43b)
Proof: Assume, first, that the state vector xk is known at each

time instant k. Then, recalling (5) and the fact that f(i)k gNi=1 are inde-
pendent of xk and Yk�1 by the lemma’s assumption yields

pY j ;x (�k j �k; Xk)

= py j ;x ;Y (Yk j �k;Xk;�k�1)

� pY j ;x (�k�1 j �k;Xk)

=

N

i=1

p
y j ;x

(Y
(i)
k j�

(i)
k ; Xk) pY jx (�k�1 jXk)

(44)

where

�k �
(1)
k ; . . . ;�

(N)
k : (45)

Therefore,

p
Y j ;x

(�k j �
(i)
k ; Xk)

= p
y j ;x

(Y
(i)
k j �

(i)
k ; Xk)

�
N

j=1;j 6=i

p
y jx

(Y
(j)
k jXk) pY jx (�k�1 jXk):

(46)

Now, according to Lemma 3.1, the lower bound on the estimation error
variance of each interruption variable (i)k is as shown in (47) at the
bottom of the page. By definition

y
(i)
k j (i)k ; xk � N H

(i) + 
(i)
k �H(i)

xk; R
(i)
k (

(i)
k ) : (48)

Therefore, the integral on the RHS of (47) is equal to

+1

�1

p
y j ;x

(Y
(i)
k j 0; xk)py j ;x

(Y
(i)
k j 1; xk)dY

(i)
k

=
1

(2�)m =2 detR
(i)
k (1)detR

(i)
k (0)

1=4

�

+1

�1

exp �(Y
(i)
k ) dY

(i)
k (49)

where

�(Y
(i)
k ) �

1

4
Y
(i)
k �H

(i)
xk

T

R
(i)
k (0)

�1
Y
(i)
k �H

(i)
xk

+ Y
(i)
k �H

(i)
xk ��H(i)

xk
T

R
(i)
k (1)

�1

� Y
(i)
k �H

(i)
xk ��H(i)

xk : (50)

Now, using the following definitions:

Y Y
(i)
k �H

(i)
xk (51a)

� R
(i)
k (0)

�1
+R

(i)
k (1)
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R
(i)
k (1)

�1
�H(i)

xk (51b)

in (50) yields

�(Y
(i)
k )= �

1

4
Y
T

R
(i)
k (0)

�1
+R

(i)
k (1)

�1
Y

�Y T
R
(i)
k (0)

�1
+R

(i)
k (1)

�1
�

��T R
(i)
k (0)

�1
+R

(i)
k (1)

�1
Y

+�T R
(i)
k (0)

�1
+R

(i)
k (1)

�1
�

+xTk�H
(i)T

R
(i)
k (1) +R

(i)
k (0)

�1

�H(i)
xk

=�
1

4
Y ��

T

R
(i)
k (0)

�1
+R

(i)
k (1)

�1
Y � �

+xTk�H
(i)T

R
(i)
k (1) +R

(i)
k (0)

�1

�H(i)
xk

=�
1

2
Y
(i)
k �H(i)

xk��
T 1

2
R
(i)
k (0)

�1
+R

(i)
k (1)

�1

� Y
(i)
k �H

(i)
xk � �

�
1

4
x
T
k�H

(i)T
R
(i)
k (1) +R

(i)
k (0)

�1

�H(i)
xk:

(52)

E ̂
(i)
kjk � 

(i)
k

2

j xk p
(i)
k 1� p

(i)
k

+1

�1

p
Y j ;x

(�k j 0; xk)pY j ;x
(�k j 1; xk)d�k

2

= p
(i)
k (1� p

(i)
k )

+1

�1

p
y j ;x

(Y
(i)
k j 0; xk)py j ;x

(Y
(i)
k j 1; xk)

�
N

j=1;j 6=i

p
y jx

(Y
(j)
k j Xk)

+1

�1

pY jx (�k�1 j xk)d�k�1 dY
(1)
k � � � dY (N)

k

2

= p
(i)
k (1� p

(i)
k )

+1

�1

p
y j ;x

(Y
(i)
k j 0; xk)py j ;x

(Yk j 1; xk)dY
(i)
k

2

: (47)
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Substituting (52) into (49) yields

+1

�1

p
y j ;x

(Y
(i)
k j 0; xk)p

y j ;x
(Y

(i)
k j 1; xk)dY

(i)
k

=

det R
(i)
k (1)�1R

(i)
k (0)�1

det 1
2

R
(i)
k (1)�1+R

(i)
k (0)�1

�exp �
1

4
x
T
k�H

(i)T
R
(i)
k (1)+R

(i)
k (0)

�1

�H(i)
xk : (53)

But

det R
(i)
k (1)�1R

(i)
k (0)�1

det 1
2

R
(i)
k (1)�1 +R

(i)
k (0)�1

=

det R
(i)
k (1)�1R

(i)
k (0)�1

detR
(i)
k (1)�1 det 1

2
R
(i)
k (1) +R

(i)
k (0) detR

(i)
k (0)�1

= L
(i)
R (54)

where L(i)
R is defined in (43a). Therefore,

+1

�1

p
y j ;x

(Y
(i)
k j 0; xk)p

y j ;x
(Y

(i)
k j 1; xk)dY

(i)
k

= L
(i)
R exp �

1

4
x
T
k�H

(i)T
R
(i)
k (1)+R

(i)
k (0)

�1

�H(i)
xk :

(55)

Finally, substituting the last result into (47), taking the mathematical
expectation of both sides of the expression, and using the fact that xk �
N 0;�k yields

E ̂
(i)
kjk � 

(i)
k

2

p
(i)
k 1� p

(i)
k L

(i)
R

1

(2�)n det(�k)

�

+1

�1

exp �
1

2
X

T
k �H

(i)T
R
(i)
k (1)+R

(i)
k (0)

�1

�H(i)
Xk

�
1

2
X

T
k �

�1
k Xk dXk

= p
(i)
k 1� p

(i)
k L

(i)
R L

(i)
H (56)

where L(i)
H is defined in (43b).

The main result of this correspondence is now stated in the following
theorem.

Theorem 4.1: A lower bound on the estimation error variance of
each interruption variable in the system defined in Section II is given
by

E ̂
(i)
kjk � 

(i)
k

2
(i)
P L

(i)
R L

(i)
H (57)

where L(i)
R and L(i)

H are given in (43a) and (43b), respectively, and (i)
P

is defined as

(i)
P p

(i)
k 1� p

(i)
k � p

(i)
k�1 1� p

(i)
k�1 P

(i)
11 � P

(i)
10

2

:

(58)

Proof: Given the value of k�1 the system reduces, due to the
Markov property, to the case treated by Lemma 4.1. Therefore,

E ̂
(i)
kjk � 

(i)
k

2

j (i)k�1 = j P
(i)
1j 1� P

(i)
1j L

(i)
R L

(i)
H : (59)

Taking mathematical expectation of both sides of (59) and using the
smoothing property of the conditional expectation yields

E ̂
(i)
kjk � 

(i)
k

2

P
(i)
10 1� P

(i)
10 1� p

(i)
k�1 + P

(i)
11 1� P

(i)
11 p

(i)
k�1

� L
(i)
R L

(i)
H (60)

which gives (57), (58) after rearranging terms.

Remark 4.1: In the case of a homogeneous chain in steady state
(p(i)k =p(i)=constant) the term (i)

P in the lower bound takes the form

(i)
P = p

(i) 1� p
(i) 1� P

(i)
11 � P

(i)
10

2

: (61)

A. Lower Bound Computation Algorithm

The lower bound presented in Theorem 4.1 can be easily evaluated
using the following recursive algorithm.

1) The state vector covariance matrix is initialized with �0.
2) At each time step k = 1; 2; . . . ; the state vector covariance

matrix is updated via the recursion

�k = ��k�1�
T +GQG

T
: (62)

The a priori probabilities p(i)k are updated via the recursion

p
(i)
k = P

(i)
11 p

(i)
k�1 + P

(i)
10 1� p

(i)
k�1 : (63)

3) Finally, (57) together with (43a), (43b), and (58) is used to com-
pute the lower bound on the estimation error variance of each
interruption variable at time k.

Note that the lower bounds for different interruption variables are
independent and can be evaluated separately.

V. DISCUSSION

In this section, the effects of various factors on the new lower bound
and its subsequent properties are presented and discussed.

A. Effect of Interruption Chain Transitional Determinism

It follows from (59) and (60) that

(i)
P = E P

(i)

1
1� P

(i)

1
: (64)

This term is close to zero if the transition probabilities P (i)
1j are close

to either 1 or 0, or, in other words, if the interruption chain f(i)k g1k=0
is almost transitionally deterministic. The higher the transition uncer-
tainty of the chain, the farther are the transition probabilities from 1 and
0 and the larger is (i)

P . It can be concluded, therefore, that the term (i)
P

can be used to define a measure of the interruption chain transitional
determinism, and expresses the effect of that determinism on the pro-
posed bound: in an almost transitionally deterministic chain the lower
bound is close to zero, as could be expected.

B. Effect of Measurement Noise Sensitivity to Interruption Process

According to Theorem 4.1, the effect of the sensitivity of the mea-
surement noise in channel i to switchings of the interruption process
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f(i)k g1k=0 is expressed by the term L
(i)
R . This term has the following

property.

Proposition 5.1: For any positive definite R(i)
k (1) and R(i)

k (0)

L
(i)
R 1 (65)

where the equality exists iff

R
(i)
k (1) = R

(i)
k (0) (66)

i.e., when R(i)
k is not a function of (i)k .

Proof: First, R(i)
k (0), being a positive-definite matrix, can be

written in the following form:

R
(i)
k (0) = SST ; detS 6= 0: (67)

Hence,

L
(i)
R =

det R
(i)
k (1)SST

det 1
2

R
(i)
k (1) + SST

=

det R
(i)
k (1)SST

det(S)det(ST ) det 1
2

S�1R
(i)
k (1)S�T + I

=

det S�1R
(i)
k (1)S�T

det 1
2

S�1R
(i)
k (1)S�T + I

: (68)

Let f�jgmj=1 be the eigenvalues of the positive definite matrix

S�1R
(i)
k (1)S�T . Then the eigenvalues of the matrix

1

2
S�1R

(i)
k (1)S�T + I

are equal to f1=2(�j + 1)gmj=1. Therefore, using (68)

L
(i)
R =

m

j=1

2 �j

�j + 1
=

m

j=1

1� (1� �j)
2

�j + 1
1 (69)

which is (65). Moreover, equality in (69) takes place iff

�j = 1; j = 1; 2; . . . ;mi (70)

which is equivalent to requiring that

S�1R
(i)
k (1)S�T = I (71)

yielding (66).

It follows from Proposition 5.1 that the farther are the measurement
noise covariance matrices R(i)

k (1) and R(i)
k (0) from one another, the

lower is the bound. The intuitive reason for this phenomenon is that
the larger the changes in the measurement noise covariance matrix due
to switchings in the interruption process f(i)k g1k=0, the easier is its
estimation and the smaller is its attainable estimation error variance.

C. Effect of State Estimability

Examining the termL
(i)
H given in (43b) one can see that it is a square

root of a ratio of determinants of two covariance matrices. The numer-
ator of the ratio is the determinant of the state estimation covariance
matrix, obtained after a single measurement update has been performed

at time k using a Kalman filter with an effective measurement informa-
tion contribution equal to

�H(i)T R
(i)
k (1) +R

(i)
k (0)

�1

�H(i):

The denominator is simply the determinant of the state covariance at
time k. It is well known from the theory of Gaussian vectors that for
z � N (ẑ; Pz) the value of

p
detPz is proportional to the volume of

the uncertainty ellipsoid, defined as

ZTP�1z Z 1 (72)

where Z is a realization of z. Therefore, the term L
(i)
H that satisfies

L
(i)
H 1 (73)

is equal to the ratio of the volumes of the uncertainty ellipsoids, after
and before a single measurement update with the aforementioned ef-
fective measurement information contribution, respectively. This un-
certainty ellipsoid volume ratio can be used to define a measure of
state estimability. The notion of estimability as a binary measure of the
ability to reduce the state uncertainty using a linear filter was originally
proposed by Baram and Kailath in [14]. Expanding upon this notion,
it can be stated that the inverse of the term L

(i)
H can be used as a mea-

sure for the system’s state estimability, and expresses the effect of that
estimability on the proposed lower bound.

D. Lower Bound Tightness

Upon examining the effects of the various factors on the proposed
lower bound as discussed earlier, it becomes clear that its tightness
depends heavily on the whiteness of the interruption process. Thus,
according to Lemma 4.1, the lower bound in the white interruption
sequence case is equal to the interruption variable variance multiplied
by the terms L(i)

R and L(i)
H . Therefore, if the system measurements in

channel i are insensitive to the interruption process, in which case both
L
(i)
R andL(i)

H are equal to 1, the lower bound is equal to the interruption
process variance. In this case, there exists an efficient estimator ̂(i)

kjk =

E[
(i)
k ] = p

(i)
k . In practice, this may happen if R(i)(0) � R(i)(1)

and the system’s state estimability measure is small. If, on the other
hand, either L(i)

R or L(i)
H is close to zero, which may happen if either

R(i)(0) andR(i)(1) are very different from one another or the system’s
state estimability measure is large, the lower bound is close to zero,
which expresses the feasibility of perfectly estimating the interruption
indicators. In fact, when ~H

(i)
k (

(i)
k ) = 0 for some realization of (i)k

and R(i)(0) � R(i)(1) � 0, such an estimate can be provided by a
simple �2-based hypothesis test.
It should be noted that the aforementioned two cases, where efficient

estimators exist, correspond to the conditions (23b) and (23a), respec-
tively, of Corollary 3.1. Moreover, according to that corollary, these are
the only cases where the lower bound is tight.
In the case of a colored interruption process

(i)
P = p

(i)
k 1� p

(i)
k � p

(i)
k�1 1� p

(i)
k�1 P

(i)
11 � P

(i)
10

2

p
(i)
k 1� p

(i)
k (74)

so that even if the system measurements in channel i are insensitive
to (i)k , the lower bound is still smaller than the interruption process
variance. In the case of a highly correlated Markov chain one has

P
(i)
11 � P

(i)
10

2

� 1 (75)
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TABLE I
TEST CASES OF THE LOWER BOUND NUMERICAL STUDY

which renders the bound approximately zero even if L(i)R L
(i)
H � 1.

The reason for this phenomenon lies in the conditioning on k�1 in the
derivation procedure. Because of this conditioning, the lower bound
given in Theorem 4.1 must be valid also for estimators that explicitly
use the value of k�1. In systems with highly correlated interruption
processes

Pr 
(i)
k = 

(i)
k�1 � 1 (76a)

or

Pr 
(i)
k = 

(i)
k�1 � 0 (76b)

driving the a priori uncertainty (and, hence, the estimation error lower
bound) of the interruption variables to zero.

Another factor affecting the lower bound tightness is the state vector
estimation accuracy. The proof of Lemma 4.1 assumes that the state
vectorxk is known. This assumption implies that the lower bound given
in Lemma 4.1 and, therefore, in Theorem 4.1, must be valid also for es-
timators that explicitly use the value of xk . In other words, the proposed
lower bound does not consider the impact of the state vector estimation
error on the interruption variable estimation accuracy. It follows, there-
fore, that the lower bound becomes less tight—and, hence, its utility
decreases—as, e.g., the process noise increases.

VI. NUMERICAL EXAMPLE

A numerical simulation study has been carried out to demonstrate
the usage and properties of the new lower bound. In this study, the
lower bound is used to examine the efficiency of the interacting mul-
tiple model (IMM) estimation algorithm [6]. The IMM algorithm is a
powerful tool in filtering of hybrid systems. The estimator consists of
a bank of Kalman filters designed each for a different discrete mode
of the system. The residuals produced by these filters are used to form
the mode likelihood functions, which then serve in a hypothesis-testing
mechanism. The stage that makes the IMM algorithm particularly pow-
erful is the interaction stage. During this stage, the estimates of different
Kalman filters are mixed using mixing probabilities such that the less
likely estimates are “punished” in the sense that their covariance ma-
trices grow relative to those of more likely modes.

As an illustrative example, the following simple scalar system is
considered. Let fxkg1k=0 be a scalar stationary zero-mean Gaussian
process with the autocorrelation function

Rx(k; l) = 100'jk�lj; 0 < ' < 1: (77)

Such a process can be generated, e.g., by the following first-order dy-
namics:

xk+1 = 'xk + wk+1 (78)

where x0 � N (0; 100) and the process noise fwkg
1
k=1 is a white

sequence with wk � N (0;Q), such that

Q = 100 1� '
2
: (79)

The observation process in this example is also scalar and is defined as

yk+1 = (1� k+1) xk+1 + vk+1 (80)

where the measurement noise fvkg1k=1 is a white sequence indepen-
dent of the process noise fwkg

1
k=1, and the initial state x0, with vk �

N (0; R(k)). The interruption process fkg1k=0 is a Bernoulli Markov
chain with

Prf0 =1g = 0 (81a)

Prfk =1 j k�1 = jg = P1j ; j 2 f0; 1g: (81b)

In this example �k is constant (�k = 100),N = 1,H(1) = 1, and
�H(1) = �1. Therefore, the lower bound given by Theorem 4.1 takes
the form

E ̂kjk � k
2

pk (1� pk)�pk�1 (1� pk�1) (P11 � P10)
2

�
2 R(1)R(0)

R(1) +R(0)

1

1 + 100
R(1)+R(0)

(82)

where the probabilities pk can be computed using the following
recursion:

pk = P11pk�1 + P10 (1� pk�1) (83)

and p0 = 0.
Concerning the application of the IMM algorithm to the system de-

fined above, note that it has only two modes corresponding to k = 1
and k = 0. Therefore, the IMM algorithm comprises the following
steps. Note that at each time step k + 1 the quantities: x̂(j)

kjk;k, P
(j)
kjk;k

for j 2 f0; 1g and ̂kjk are available from previous calculations.

1) Mode time propagation

̂k+1jk = P11̂kjk + P10 1� ̂kjk : (84)

2) Mixing (j 2 f0; 1g)

x̂
(j)
kjk+1;k =�j x̂

(1)
kjk;k + (1� �j) x̂

(0)
kjk;k (85a)

P
(j)
kjk+1;k =�j P

(1)
kjk;k + x̂

(1)
kjk;k � x̂

(j)
kjk+1;k

2

+ (1� �j) P
(0)
kjk;k + x̂

(0)
kjk;k � x̂

(j)
kjk+1;k

2

(85b)

where

�1 =
P11̂kjk

̂k+1jk
(86a)

�0 =
(1� P11) ̂kjk

1� ̂k+1jk
: (86b)

3) State time propagation (j 2 f0; 1g)

x̂
(j)
k+1jk+1;k ='x̂

(j)
kjk+1;k (87a)

P
(j)
k+1jk+1;k ='

2
P
(j)
kjk+1;k +Q: (87b)
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Fig. 1.  estimation error variance achieved by IMM (bold solid line) versus the lower bound (thin dashed line).

4) Mode measurement update

̂k+1jk+1 =
f1̂k+1jk

f1̂k+1jk + f0 1� ̂k+1jk
(88)

where

fj =
1p
2��j

exp � 1

2�2j
yk+1 � (1� j)x̂

(j)
k+1jk+1;k

2

;

j 2 f0; 1g (89)

and

�
2
j = (1� j)2P

(j)
k+1jk+1;k +R(j); j 2 f0; 1g: (90)

5) State measurement update (j 2 f0; 1g)

Kj =
P
(j)
k+1jk+1;k(1� j)

�2j
(91a)

x̂
(j)
k+1jk+1;k+1 = x̂

(j)
k+1jk+1;k

+Kj yk+1�(1�j)x̂
(j)
k+1jk+1;k (91b)

P
(j)
k+1jk+1;k+1 = [1�Kj(1� j)]P

(j)
k+1jk+1;k (91c)

where �j is given by (90).
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Applying these steps the estimate of k at each time step k is given
by ̂kjk .

Six test cases, whose numerical parameters are summarized in
Table I, were studied. 20 000 Monte Carlo runs were used to compute
the estimation error variance of the IMM algorithm in each case.

The results of the study are presented in Fig. 1. One can see that
in the nominal case [Fig. 1(a)], where the process noise is relatively
small, the IMM estimation error variance and the lower bound are quite
close to each other: the lower bound is about 72% of the IMM estima-
tion error variance. The immediate conclusion is that in the nominal
case the IMM algorithm is close to being optimal in the mean-square
sense. In the case of the slow interruption process [Fig. 1(b)], both the
IMM estimation error variance and the lower bound become smaller,
but in this case their difference grows: the lower bound is now only
21% of the IMM estimation error variance [see Fig. 1(b)]. This result
agrees with the claim that the lower bound given by Theorem 4.1 is no
longer tight in the case of slow (i.e., highly correlated) Markov chains.
In the case of high process noise [Fig. 1(c)] the IMM estimation error
variance grows relative to the nominal case while the lower bound re-
mains the same, such that it constitutes 54% of the IMM estimation
error variance. This result corresponds to the fact that the lower bound
does not take into account the effect of state vector estimation error on
the estimation accuracy of the interruption variables. The effect of dif-
ferent measurement noise variances in k = 1 and k = 0 is shown in
Fig. 1(d). Both the IMM estimation error variance and the lower bound
become smaller than in the nominal case. The lower bound in this case
is about 45% of the IMM estimation error variance, which may mean
that either the lower bound is not tight or the IMM algorithm is not
optimal. The last two cases [Fig. 1(e) and (f)] correspond to the two
situations where efficient estimators may exist. In these cases, the in-
terruption sequence is white, the measurement noise is unaffected by
the interruption sequence, and the system’s state estimability measure
is either very small [Fig. 1(e)] or very large [Fig. 1(f)]. One can see that
the IMM estimation error variances are very close to the lower bounds,
which means that the IMM algorithm in these cases is efficient and is,
therefore, optimal in the mean-square sense.

VII. CONCLUSION

A lower bound on the estimation error of interruption variables in
systems with uncertain measurements has been presented. Contrary to
the recently proposed CRLB-type lower bound for this type of sys-
tems, the lower bound presented here, which is derivable using thewell-
known Weiss–Weinstein lower bound, is nontrivial. It can be easily
evaluated independently for each measurement channel using a simple
recursive algorithm.

The new lower bound depends on ameasure of the interruption chain
transitional determinism, the measurement noise sensitivity to inter-
ruption process switchings, and a measure of the system’s state es-
timability. However, the effect of the state vector estimation error on
the estimation accuracy of the interruption variables is not taken into
account.

It is shown that the proposed lower bound can be tight in the case
of white interruption processes and extremely high or extremely low
state estimability. Its tightness reduces in the case of highly correlated
interruption processes.

The use of the lower bound and some of its properties are
illustrated via a simple numerical example. The proposed result can
be implemented in practical applications to examine fault detectability
in systems with independent fault-prone sensors. The lower bound is
particularly useful in systems with low process noise (such as some
spacecraft applications) and almost white Markovian interruption
sequences.
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