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Methods are developed for estimating the rotation rate of a spacecraft using only measured magnetic � eld
data. The goal is to provide rate information for use in applications such as detumbling, nutation damping, and
momentum management without using gyroscopes. Two algorithms are developed, a deterministic algorithm and
an extended Kalman � lter. Both algorithms employ the magnetic � eld direction kinematics equation and Euler’s
equation for attitude motion of a rigid body with momentum wheels. Neither algorithm requires a model of the
Earth’s magnetic � eld. The deterministic algorithm solves a nonlinear least-squares problem for the unknown
angular momentum component along the magnetic � eld direction. The extended Kalman � lter estimates the
attitude rate vector, corrections to � ve of the six inertia matrix elements, and two error states of the measured
magnetic � eld direction. It uses an initial rate estimate from the deterministic algorithm to avoid divergence. The
algorithms have been tested using data from a spinning sounding rocket. They achieve initial accuracies in the
range 2–7 deg/s when the rocket spins at about 80 deg/s, and their accuracies improve to 1–2 deg/s after the spin
rate decays to 20 deg/s. These results indicate a lower bound on the ratio of the error to the nominal spin rate,
which suggests that dynamic modeling error is the dominant source of uncertainty.

I. Introduction

M ANY spacecraft need estimates of their rotation rates. The
spin rate may be used to apply a control that stops tumbling,

to manage the total system angularmomentum, to aid a star tracker,
or as part of an attitude determination system. The most common
method of determining attitude rate is by direct rate-gyro measure-
ment. This paper develops two attitude rate estimationmethods that
rely on Earth magnetic � eld measurements rather than on rate-gyro
measurements.

There are several important reasons to avoid the use of rate gyros.
Gyros are expensive and failure prone. They have signi� cant mass
and consume a signi� cant amount of power. The desire to manufac-
ture small, lightweight, inexpensive,and reliable satellites militates
against the use of rate gyros. Gyroless rate estimation schemes can
be importanteven for missions that include rate gyrosbecause these
schemes provide a backup capability.

A number of methods have been developed to estimate attitude
rate without using rate-gyro data. Some methods work directlywith
vectorattitudedata and use either deterministicdifferentiationtech-
niques or Kalman � ltering techniques to estimate attitude rate (see
Refs. 1–3). Another method uses full three-axis attitude estimates
as inputs to a rate estimation � lter.4 In Ref. 5, both types of measure-
ments are considered and � lters are compared to derivative-based
estimators.Another class of methods estimates attitude and attitude
rate simultaneously,using vector and scalar attitudemeasurements.
These include deterministic methods that employ differentiation
techniques6;7 and � lter-based techniques.6¡10

A unique aspect of the rate estimation techniques described in
Ref. 3 is the complete lack of dependence on attitude knowledge.
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The techniques’ algorithms assume that the measured attitude ref-
erence vector is � xed in inertial space, so that there is no need to
transforman inertial time derivativeinto bodycoordinates.The only
other known gyroless rate estimation algorithm that is independent
of attitude knowledge is the high-rate limit algorithm of Ref. 7.
Attitude-independentrate estimation techniquesare suitable for ap-
plications such as detumbling control, momentum management, or
nutation damping, but their outputs are not suf� ciently accurate to
be used like rate gyros in an attitude estimation � lter.

In Ref. 3, the attitude rate is estimated by the use of a time series
of measurements of the Earth’s magnetic � eld vector. The methods
do not require knowledge of the magnetic � eld direction in iner-
tial coordinates. This feature allows the estimators to work without
spacecraft position knowledge and without a complicated spherical
harmonicmodelof theEarth’smagnetic� eld.This attitudereference
vector, however, has a nonzero inertial rotation rate as a spacecraft
moves along its orbit, which violates the paper’s assumption. For-
tunately, this rotation rate is normally less than 0.12 deg/s, which
implies that the method can work effectively if the required attitude
rate resolution is no � ner than this lower bound.

In Refs. 3, 6, and 7, nonlinearities are handled by the use of de-
terministic batch algorithms in conjunction with extended Kalman
� lters. The batch algorithms deal directly with nonlinearities and
cannotdiverge.Their outputs are used to initializeextendedKalman
� lters (EKF) near enough to the true state to avoid divergence.The
techniques described in Refs. 1, 2, and 4, on the other hand, use
unusual Kalman � lters that try to maintain linearity by making ap-
proximations. These methods do not require special algorithms for
initialization because they are less prone to diverge, but their es-
timates are likely to be less accurate than those of a converged
EKF.

The present paper develops improved versions of the two rate
estimation algorithms described in Ref. 3. The new deterministic
algorithm works directly with Euler’s equation to determine the at-
tituderatealong themagnetic� eld direction,and it usesan improved
solutiontechniquethat incorporatesa globalnonlinearleast-squares
solver. The new Kalman � lter improves on the Ref. 3 � lter by ex-
plicitly accountingfor the normalizationconstrainton the measured
magnetic � eld direction vector. It also augments the � lter state to
include� ve of the six inertia matrix elements.The Ref. 3 techniques
were testedusing only simulateddata, but the present improvements
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enable their approach to work well with actual � ight data from a
spinning spacecraft.

This paper’s methods and results are presented in the next � ve
sections. In Sec. II, dynamic models of the attitude rate vector and
of the magnetic � eld direction vector are presented. These mod-
els are used to develop the two attitude rate estimation algorithms.
The deterministic attitude rate estimator is developed in Sec. III.
In Sec. IV, the observability of the system is analyzed and the rare
conditions under which the attitude rate cannot be estimated based
on magnetic � eld measurements alone is determined. The EKF at-
titude rate estimator is described in Sec. V. In Sec. VI, the results of
tests of the two algorithms on actual � ight data are presented. The
paper’s conclusions are presented in Sec. VII.

II. Dynamic Models for the Attitude Rate
and Magnetic Field Direction Vectors

A. Rigid-Body Attitude Dynamics Model
Both of the rate estimators use Euler’s equations to model the

attitude rate vector’s dynamics. The model includes a main rigid
body and momentum wheels. It takes the form

Im P! C Ph C ! £ .Im! C h/ D wn (1)

In this equation, Im is the mass moment of inertia matrix, ! is the
angular velocity vector, h is the angular momentum vector of the
momentum wheels, and wn is the net external torque. All of these
quantities are de� ned in spacecraft-�xed coordinates.

Two different models of the net external torque are used for the
two different estimation algorithms. The deterministic algorithm
assumes that wn D 0. The Kalman � lter models wn.t/ as being a
white-noise process disturbance. These assumptions could be re-
laxed to include explicit external torque models, but such models
would complicate the estimation algorithms. Fortunately, external
torques can be neglected or modeled as white noise in many cir-
cumstances without seriously degrading the attitude rate estimation
accuracy.

B. Magnetic Field Kinematic Model
The estimation algorithms use a kinematic model of the motion

of the magnetic � eld unit direction vector. Its takes the form

POb C ! £ Ob D ¡w! £ Ob (2)

In this equation, Ob is the body-axesmagnetic � eld direction vector,
and the vector w! is the rotation rate of the magnetic � eld direction
vector as measured with respect to inertial coordinates.All of these
vectors are expressed in spacecraft body coordinates.

The two estimation algorithms use two different models for w! .
The deterministic algorithm assumes that w! D 0. In a typical low
Earth orbit, this assumption causes a maximum attitude rate error
on the order of 0.12 deg/s because the magnetic � eld rotates with
respect to inertial space at a rate of twice per orbit if the orbit passes
over the magnetic poles. At lower magnetic inclinations, the � eld’s
inertial rotation rate is smaller, which reduces the error of assuming
thatw! D 0.The Kalman � ltermodelsw!.t/ as a white-noiseprocess
disturbance.This lattermodelallowsforuncertaintyabout the � eld’s
slow inertial rotationrate and enablesthe � lter to graduallydeweight
old magnetic � eld measurements.

C. Constant Projection of the Angular Momentum
Along the Magnetic Field Direction

The deterministicalgorithmassumes that the angularmomentum
vectorand themagnetic� eld directionvector remain � xed in inertial
space. This assumption is reasonable if the algorithm works with
a short enough data batch because neither vector will have enough
time to change signi� cantly. This assumption implies that the pro-
jection of the angular momentum vector along the magnetic � eld
direction is a constant, that is,

Lb D ObT .Im! C h/ (3)

a scalar constant.

III. Deterministic Attitude Rate Estimation Algorithm
A. Two Components of Attitude Rate
from Magnetic Field Kinematics

The magnetic � eld kinematics equation (2) can be used to deter-
mine the components of the attitude rate ! that are perpendicular
to the measured magnetic � eld. If one assumes that w! D 0, then
Eq. (2) can be used to derive the followingexpressionfor theangular
rate:

! D ® Ob C POb £ Ob (4)

where ® D ObT ! is the unknown angular rate component parallel to
the measured magnetic � eld direction. Equation (4) can be derived
from Eq. (2) by taking the cross product of both sides of Eq. (2)
with Ob while recognizing that .! £ Ob/ £ Ob D .ObObT ¡ I /!, where I
is the identity matrix.

The time derivativeof Ob is computed as follows. The actual mea-
sured data consist of b0, b1 , b2; : : : ; a sequence of magnetic � eld
vectorsthat aremeasuredat the sample times t0 , t1 , t2; : : : . These raw
measurements get processed using a batch curve � tting procedure
that works with all of the measurements that fall within §0:5Tderv s
of a giventime of interest tk . It � ts each elementof the measured� eld
vector to a quadratic polynomial in t . These polynomials and their
time derivative are used to produce smoothed estimates of b.tk / and
Pb.tk /. The smoothed b.tk/ gets normalized to produce the Obk value
that is used in this paper’s deterministic estimation algorithm. The
time derivative of the normalization formula is used along with the
smoothed Pb.tk / to compute

:

Obk . Care must be taken to use a reason-
able length for the quadratic curve-� tting window Tderv . If Tderv is
too large, then a quadratic model of b.t/ will be poor, but if Tderv is
too small, then the estimated

:

Obk will be very noisy.

B. Parameterization of the Rate in Terms
of an Angular Momentum Component

The unknown angular rate component ® will be time varying in
the general case. It is convenient to express ®k D ®.tk/ in terms of
the constantangularmomentumcomponentalongthemagnetic� eld
Lb . This can be accomplishedby substitutingthe Eq. (4) expression
for ! into Eq. (3) and solving for ®. The resulting formula is

®k D
Lb ¡ ObT

k fIm[PObk £ Obk ] C h.tk /g
ObT

k Im
Obk

(5)

Equation (5) allows one to express the time-varying angular ve-
locity in terms of the constant Lb . If one substitutes Eq. (5) into
Eq. (4), the result is

!k D !.tk/ D °k C ´k Lb (6)

where the vectors °k and ´k are de� ned by the formulas

°k D PObk £ Obk ¡ Obk

µ ObT
k fIm[PObk £ Obk ] C h.tk /g

ObT
k Im

Obk

¶
(7a)

´k D Obk

µ
1

ObT
k Im

Obk

¶
(7b)

Thus, the goal of estimating the attitude rate reduces to the goal of
estimating the constant Lb .

C. Least-Squares Problem from Trapezoidal
Integration of Euler’s Equation

The unknown angular momentum component Lb can be deter-
mined by using Euler’s equation (1). If one multiplies Eq. (1) by
(Im /¡1 , integratesit trapezoidallyfromsample time tk to sample time
tk C 1, sets wn D 0, and uses Eq. (6) to eliminate !k and !k C 1 from
the result, then the equation takes the following vector quadratic
form:

ck L2
b C dk Lb C ek D 0 (8)
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where the vectors ck , dk , and ek are de� ned by

ck D .1tk=2/I ¡1
m [´k C 1 £ .Im´k C 1/ C ´k £ .Im ´k/] (9a)

dk D ´k C 1 ¡ ´k C .1tk =2/I ¡1
m f´k C 1 £ [Im °k C 1 C h.tk C 1/]

C °k C 1 £ [Im ´k C 1] C ´k £ [Im °k C h.tk /]

C °k £ [Im ´k]g (9b)

ek D °k C 1 ¡ °k C I ¡1
m [h.tk C 1/ ¡ h.tk /] C .1tk =2/I ¡1

m

£ f°k C 1 £ [Im °k C 1 C h.tk C 1/] C °k £ [Im°k C h.tk /]g (9c)

and where 1tk D tk C 1 ¡ tk is the interval between the two sample
times. The use of trapezoidal integration to derive Eq. (8) implies
that1tk must be small comparedto typicalspinandnutationperiods;
otherwise, the trapezoidalapproximationwill produce poor results.

The deterministicalgorithmestimates Lb by simultaneouslysolv-
ing multiple versions of Eq. (8) that arise from multiple sample
intervals. The resulting overdetermined system of nonlinear equa-
tions is solved in an approximate least-squares sense. The use of
multiple equations decreases the effect of noise on the accuracy
of Lb . Suppose that one wants to estimate Lb using data that fall
within §0.5TLb s of tk . One � rst determines jmin D [the minimum
j such that (tk ¡ 0:5TLb/ · t j ] and jmax D [the maximum j such
that t j C 1 · .tk C 0:5TLb/]. Next, one solves the following overde-
termined system of quadratic equations in a least-squares sense:

cbig L2
b C dbig Lb C ebig D 0 (10)

where the vectors cbig, dbig, and ebig are de� ned by

cbig D
h
cT

jmin
; cT

. jmin C 1/; cT
. jmin C 2/; : : : ; cT

jmax

iT

(11a)

dbig D
h
dT

jmin
; dT

. jmin C 1/; dT
. jmin C 2/; : : : ; dT

jmax

iT

(11b)

ebig D
h
eT

jmin
; eT

. jmin C 1/; eT
. jmin C 2/; : : : ; eT

jmax

iT

(11c)

The weighted least-squares solution of Eq. (10) minimizes the
following cost function:

J .Lb/ D 1
2

¡
cbig L2

b C dbig Lb C ebig

¢T
P¡1

big

¡
cbig L2

b C dbig Lb C ebig

¢

(12)

The positive-de�niteweightingmatrix P¡1
big has beenchosen to equal

the inverse covariance of a statistical error model for Eq. (10). In
this case, the cost function J .Lb/ can be viewed as the negative
of a log-likelihood function and the minimizing Lb as a maximum
likelihood estimate.

The matrix Pbig models the correlations between the errors in
Eq. (8) for the sample intervalsk D jmin to k D jmax. There are corre-
lations among the componentsof the error vector for a given sample
index k, and there are correlationswith the errors of the neighboring
sample intervals k ¡ 1 and k C 1. The covariance matrix takes the
following block tridiagonal form:

Pbig D

2

6666666664

P jmin Q jmin 0 0 : : : 0

QT
jmin

P. jmin C 1/ Q. jmin C 1/ 0 : : : 0

0 QT
. jmin C 1/ P. jmin C 2/ Q. jmin C 2/ : : : 0

0 0 QT
. jmin C 2/ P. jmin C 3/ : : : 0

:::
:::

:::
:::

: : :
:::

0 0 0 0 : : : Pjmax

3

7777777775

(13)

where

Pk D Ptrue.k/ C f0:001 tr[Ptrue.k/]gI (14a)

Ptrue.k/ D ¾ 2[I C 0:51tk Ck C 1][I ¡ Dk C 1][I ¡ Dk C 1]T

£ [I C 0:51tk Ck C 1]
T C ¾ 2[¡I C 0:51tk Ck][I ¡ Dk ]

£ [I ¡ Dk ]T [¡I C 0:51tk Ck]
T (14b)

Qk D ¾ 2[I C 0:51tkCk C 1][I ¡ Dk C 1][I ¡ Dk C 1]T

£ [¡I C 0:51tk C 1Ck C 1]
T (14c)

are 3 £ 3 covarianceand cross-correlationmatrices. The quantity ¾
is the standard deviation of the errors in the two components of

:

Obk

that are perpendicularto Obk . The two 3 £ 3 matrices Ck and Dk that
appear in Eqs. (14b) and (14c) are de� ned as follows:

Ck D I ¡1
m .¡[fIm °k C h.tk/g£] C [°k £]Im / (15a)

Dk D Obk
ObT

k Im

¯ObT
k Im

Obk (15b)

where the notation [z£] indicates the 3 £ 3 cross-productequivalent
matrix that is associated with the three-dimensional vector z. The
ad hoc trace term in Eq. (14a) enforces positive de� niteness so that
P¡1

big will exist. Without this modi� cation, Pbig fails to be positive
de� nite because the underlying Euler’s equation has zero error in
the Ob direction due to the use of Eq. (3).

The error covariance model in Eqs. (13–15b) assumes that the
dominanterrorsare thoseof the “measured”magnetic� eld direction
time derivative

:

Obk . The error model assumes that ¾ 2[I ¡ Obk
ObT

k ] is
the covariancematrix of the noise in

:

Obk . These errors propagate into
Eq. (8) through their effects on °k of Eq. (7a). The resulting net
error in Eq. (8) includes linear noise terms from the linear °k and
°k C 1 terms in the ek formula of Eq. (9c), quadraticnoise terms from
the quadratic °k and °k C 1 terms in ek , and noise that multiplies Lb

from the linear °k and °k C 1 terms in the Eq. (9b) formula for dk .
Only the linear noise terms have been used in the covariancemodel
because the other two noise types are dif� cult to manipulate.

It is possible to use an alternate weighting matrix in the least-
squares cost function of Eq. (12). The already de� ned P¡1

big weight-
ing matrix is the best of several alternative weightings that have
been tried for the attitude rate estimation case that is reported in
Sec. VI. Alternateweightingmatrices might work better in different
situations.

D. Global Solution of the Least-Squares Problem
The globalminimum of the least-squarescost functionin Eq. (12)

can be computed analytically.The cost function reduces to a quartic
polynomial in Lb

J .Lb/ D a4 L4
b C a3 L3

b C a2 L2
b C a1Lb C a0 (16)

whose coef� cients are

a4 D 1
2 cT

big P¡1
big cbig; a3 D dT

big P¡1
big cbig

a2 D eT
big P¡1

big cbig C 1
2
dT

big P¡1
big dbig

a1 D eT
big P¡1

big dbig; a0 D 1
2
eT

big P¡1
big ebig (17)

The global minimum of this function can be computed by solving
the � rst-order necessary condition for an optimum:

0 D
dJ

dLb
D 4a4 L3

b C 3a3L2
b C 2a2 Lb C a1 (18)

Any cubic polynomial can be solved analytically. It may have only
one real solution,or it may have three real solutions.One of the real
roots is guaranteed to be the global minimum of the least-squares
problembecausea4 > 0. If there is just one real solution to Eq. (18),
then it is the optimal Lb estimate. If there are three real solutions,
then one is the global minimum of J .Lb/, one is a local minimum,
and one is a local maximum. The local maximum lies between the
local minimum and the global minimum. The values of J .Lb/ at the
two extreme real solutions can be used to evaluate which of them is
the global minimum.
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The global minimum of J .Lb/ might not yield the best attitude
rate estimate if there is a second localminimum of the cost function.
This can occur because of measurement noise and modeling error
effects. Such a situation indeed occurs in some of the experimental
data that are discussed in Sec. VI. In this case, it may be wise to
use both solutions to initialize the angular rate estimates of two
alternate runs of the Kalman � lter that will be described in Sec. V.
The better solution can be determined by examining the Kalman
� lter’s behavior for the two cases.

IV. Observability Analysis
This analysis determines the conditionsunder which the attitude

rate is observable. If the deterministic algorithm has a unique so-
lution or, at worst, two possible distinct solutions, then the attitude
rate is observable.

The observability analysis works with a modi� ed version of the
Sec. III least-squaresproblem. This modi� ed problem uses the dif-
ferential form of Euler’s equation. It uses Eqs. (6–7b) and their time
derivatives to replace ! and P! with expressions involving Lb , Im ,
h, Ph, Ob,

:

Ob, and
::

Ob. The resulting overdeterminedsystem of equations
for Lb takes the form

NcL2
b C NdLb C Ne D 0 (19)

where the vectors Nc and Nd are de� ned by

Nc D
Ob £ .Im

Ob/
¡ObT Im

Ob
¢2

(20a)

Nd D
µ

.I C ObObT /Im

ObT Im
Ob

¡
2Im

ObObT Im¡ObT Im
Ob
¢2

¡ I

¶
POb C

µ Ob
ObT Im

Ob

¶

£
»µ

I ¡
2Im

ObObT

ObT Im
Ob

¶
[Im.

POb £ Ob/ C h]

¼
(20b)

The system is observable if Nc 6D 0 or Nd 6D 0 because Eq. (19) has a
unique least-squares solution, or at most two distinct local minima,
if eitherof these conditionsholds.The system is unobservableif and
only if Nc D 0 and Nd D 0 for all time. The condition Nc D 0 implies that
Ob £ .Im

Ob/ D 0. This, in turn, implies that Ob is an eigenvector of Im :
Im

Ob D ¸Ob for some positive scalar eigenvalue ¸. Unobservability
also implies that PNc D 0. This condition can be used to derive the
requirement that Im

:

Ob D ¸
:

Ob, which is true if
:

Ob D 0 or if
:

Ob is also an
eigenvectorof Im with eigenvalue¸. If

:

Ob 6D 0, then Im must have two
identical eigenvalues equal to ¸ because

:

Ob is perpendicular to Ob.
An additional condition for unobservability can be deduced by

setting Nd in Eq. (20b) equal to zero. First, the conditions that result
from the equations Nc D 0 and PNc D 0 can be used to simplify Nd to the
following form:

Nd D
£ Ob

¯ObT Im
Ob
¤

£ [Im .
POb £ Ob/ C h] (21)

By the use of Eq. (4), the angular momentum vector can be written
as L D Im.® Ob C

:

Ob £ Ob/ C h. The Nc D 0 condition that Ob must
be an eigenvector of Im can be used to simplify this expression to
yield L D ¸® Ob C Im.

:

Ob £ Ob/ C h. This expressionand Eq. (21) can be
combined to prove that Ob £ L D 0 if and only if Nd D 0. This implies
that the angular momentum vector must be parallel to the magnetic
� eld vector for the system to be unobservable.

In summary, two conditionsmust hold for the attitude rate vector
to be unobservable.First, the magnetic � eld vector must be aligned
with a principal axis of inertia of the spacecraft. Second, the mag-
netic � eld vector and the angularmomentum vectormust be aligned
with eachother.The former conditionimplies that the magnetic � eld
vector must be � xed in spacecraft coordinatesor that the spacecraft
must have at least two equal moments of inertia so that the time-
varying Ob vector can remain an eigenvector of Im . The main point
of this analysis is that the conditions for unobservability are very
restrictive. Therefore, they are unlikely to hold true, and the algo-
rithms of this paper can be used to deduce attitude rate in almost all
cases.

V. EKF Design
The other attitude rate estimation algorithm of this paper is an

EKF. The deterministicalgorithmcangive a rough initial estimateof
theattituderate thatproperlyaccountsfor all problemnonlinearities.
This estimate can be used as the initial estimate of the EKF to
minimize the risks of � lter divergence. The EKF can then operate
on the data to produce a re� ned attitude rate estimate that takes
better account of measurement and dynamic model errors and that
operates in an ef� cient recursive manner.

A. Single-Stage EKF Problem Model
The EKF has been designed by modifying the nonlinear square-

root information � lter (SRIF) of Ref. 10, which is an extension of
the linear � lter of Ref. 11. One modi� cationenables it to incorporate
properly the dynamic model of the measured magnetic � eld direc-
tion vector, Eq. (2). Another change deals with the � eld direction
measurements’ normalization constraint.

The modi� ed SRIF operates recursively from one measurement
sample to the next. It approximately solves the following con-
strained, weighted nonlinear least-squaresproblem.

Find

xk; xk C 1; ºk ; ºk C 1; and wk (22a)

to minimize

J D
1

2

(
®®Rww.k/wk

®®2
C

®®®®®

"
RC

ºº.k/ RC
ºx.k/

0 RC
x x .k/

#"¡
ºk ¡ ºC

k

¢

¡
xk ¡ xC

k

¢

#®®®®®

2

C
®®Rºº.k C 1/º k C 1

®®2

)
(22b)

subject to

A.º k C 1; Obk C 1/Obk C 1 D fb[A.ºk ; Obk/ Obk ; xk ; wk ; tk; tk C 1] (22c)

xk C 1 D fx [xk ; wk; tk ; tk C 1] (22d)

This problem includes the propagation from measurement sample
time tk to sample time tk C 1 and the measurementupdateat time tk C 1.
The vectors in this problemare de� ned as follows:Here, xk and xk C 1

are � lter state vectors at the times tk and tk C 1 , ºk and ºk C 1 are two-
dimensional magnetic � eld direction measurement error vectors at
times tk and tk C 1 , and wk is the discrete-timeprocess noise that acts
from time tk to time tk C 1. The vectors xC

k and ºC
k are a posteriori

estimatesof xk and ºk at time tk . The vectors Obk and Obk C 1 are the raw
measured magnetic � eld direction vectors in spacecraftcoordinates
at times tk and tk C 1 .

The � lter state vector x is eight-dimensional. It consists of the
3 £ 1 angular rate vector and corrections to � ve of the six inertia
matrix elements:

x D
£
!T ; 1I mxx ; 1I mxy ; 1I mx z; 1I myy ; 1I myz

¤T
(23)

The true inertia matrix is the sum of a nominal value Im0 and a
correction term,

Im D Im0 C

2

4
1Imxx 1Imxy 1Imxz

1Im xy 1Imyy 1Imyz

1Imx z 1Imyz 0

3

5 (24)

In this case, the inertia about the nominal spin axis is assumed to
be known exactly to make the other � ve inertia matrix elements
observable. This element was chosen because it is roughly equal
to the minimum principal inertia. Such a choice helps to avoid the
possibility of a singular inertia matrix estimate.

The two vector functions fb and fx in Eqs. (22c) and (22d)
constitute the � lter’s discrete-time dynamics model. The three-
dimensional vector function fb[A.ºk ; Obk /Obk ; xk ; wk; tk ; tk C 1] com-
putes a magnetic � eld direction at time tk C 1 by numerically inte-
grating the magnetic � eld differentialequation (2), starting from the
initial condition Ob.tk / D A.ºk ; Obk /Obk . The � rst three elements of the
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eight-dimensionalvector function fx [xk ; wk; tk ; tk C 1] propagate the
angular rate vector !(t/ from time tk to time tk C 1 via numerical
integration of the attitude dynamics differential equation (1). This
integration starts by initializing !(tk/ to equal the � rst three ele-
ments of xk . It uses the inertia matrix in Eq. (24) with perturbations
as de� ned by the last � ve elements of xk . The resulting !(t/ time
history also gets used in the integration of Eq. (2) that computes fb .

The processnoise vector wk consists of the magnetic � eld inertial
rate in Eq. (2) and the disturbancetorque in Eq. (1). These quantities
are de� ned during the numerical integrationinterval tk · t < tk C 1 as
follows:

µ
w!.t/

wn.t/

¶
D wk (25)

The last � ve elements of the fx function de� ne the dynamics of
the inertia matrix perturbations in xk . They are modeled as being
constants. Thus, for j D 4, 5, 6, 7, and 8,

. fx [xk ; wk ; tk; tk C 1]/ j D .xk/ j (26)

The least-squarescost function in Eq. (22b) can be interpretedas
the negativeof a log-likelihoodfunction,which implies that the � lter
is a maximum-likelihoodestimator.The weighting matrices Rww.k/,
RC

ºº.k/, RC
ºx .k/, RC

x x.k/, and Rºº.k C 1/ can be interpreted statistically.
The noise/error terms wk , .º k ¡ ºC

k /, .xk ¡ xC
k /, and ºk C 1 are each

Gaussian, zero-mean random vectors, and the weighting matrices
de� ne their covariances and cross correlations:
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where the superscript ¡T indicates the transpose of the inverse of
the matrix in question. The only two error vectors with a nonzero
cross-correlationare .ºk ¡ ºC

k / and .xk ¡ xC
k /. The covariancesand

correlations of these two vectors represent a posteriori values, that
is, values based on the measurements up through Obk , which is
why the associated R matrices have the plus sign superscript.

The 3 £ 3 matrix function A.º; Ob/ in Eq. (22c) is an orthogonal
coordinate transformationmatrix. It uses the two elements of the º
error vector to de� ne a rotation quaternionabout a rotation axis that
is perpendicularto Ob:

q.º; Ob/ D

"
V .Ob/º

p
1 ¡ ºT V T . Ob/V .Ob/º

#
(28)

where the 3 £ 2 matrix V .Ob/ is constructedso that the 3 £ 3 matrix
[V .Ob/, Ob] is orthogonal.The transformationA(º, Ob/ is theorthogonal
matrix that is associated with q.º; Ob/, per the equations in Ref. 12.
This matrix rotates the measured magnetic � eld direction Ob by the
measurement errors to compute the “true” magnetic � eld direction
A.º; Ob/Ob.

B. Unique Contributions of the Filter Design
The unique contributions of this � lter development are in the

use of the A.º; Ob/ matrix and the magnetic � eld propagation equa-
tion (22c). These provide a rational way for the � lter to incorpo-
rate Eq. (2) into its dynamics model, which is necessary to deter-

mine the attitude rate based on the magnetic � eld measurements.
Oshman and Dellus do this by augmenting the state vector with an
estimate of Ob3. This leads to a measurement error model that has
a singular covariance matrix because Ob is constrained to have unit
magnitude.

The present � lter avoids a singularmeasurementerror covariance
by de� ning the two-dimensional measurement error vector º and
the corresponding error rotation A.º; Ob/. The � lter state gets aug-
mented by the measurement error º rather than by the measurement
Ob. Dynamic propagationequation (22c) uses the Ob differentialequa-
tion, Eq. (2), to de� ne fb , but Eq. (22c) is effectively a propagation
equation for º rather than a propagation equation for Ob. It is an
implicit propagation equation, and the EKF needs to deal with this
equation sensibly. The new � lter’s measurement equation at sam-
ple time tk C 1 is effectively Rºº.k C 1/º k C 1 D Nºk C 1 , where Nºk C 1 is
a two-dimensional Gaussian random noise vector whose mean is
zero and whose covariance matrix is the identity matrix. This ap-
proach for maintaining the normalizationof the measured magnetic
� eld is akin to the multiplicative update approach for maintaining
quaternion normalization in an attitude determination EKF.13

C. EKF Algorithm
The EKF functions like the � lter of Ref. 10. It starts with a propa-

gationof the state and the square-rootinformationmatrix from stage
k to stage k C 1. The second step is a measurement update at stage
k C 1. The process then repeats itself. The details of these steps are
as follows:

1. State and Square-Root Information Matrix Propagation to Stage k C 1
The � rst part of the propagationstep uses the stage-k a posteriori

estimates ºC
k and xC

k in Eqs. (22c) and (22d) to compute a priori
estimates º¡

k C 1 and x¡
k C 1 at stage k C 1 along with a linearized

model of Eqs. (22c) and (22d). The a priori state at stage k C 1
is x¡

k C 1 D fx [xC
k ; 0; tk ; tk C 1]. The calculation of º¡

k C 1 starts with a
computation of the a priori magnetic � eld direction estimate:

Ob¡
k C 1 D fb

£
Ak

¡
ºC

k ; Obk

¢Obk ; xC
k ; 0; tk ; tk C 1

¤
(29)

Here, º¡
k C 1 is determined by solving A.º¡

k C 1;
Obk C 1/Obk C 1 D Ob¡

k C 1,
where Obk C 1 is themeasuredmagnetic� elddirectionvectorat sample
time tk C 1. To solve this equation,one � rst computesan attitudeerror
vector and an attitude error angle:

e D Ob¡
k C 1 £ Obk C 1 and µ D atan2

©
kek;

£¡Ob¡
k C 1

¢T Obk C 1

¤ª

(30)

If µ D 0, then º¡
k C 1 D 0. Otherwise, º¡

k C 1 is determined by solving
the system of equations

V .Obk C 1/º
¡
k C 1 D [sin.µ=2/=kek] e (31)

The case µ D 180 deg should never occur. Although this system
of three linear equations in two unknowns is overdetermined, it is
consistent and is guaranteed to have a solution.

The linearized version of Eqs. (22c) and (22d) takes the form:
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where
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with

Uk C 1 D
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V T
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(35)

The notation@ fb=@[AOb] refers to differentiationof fb with respect to
its � rst argument,and the notationjk refers to evaluationof thecorre-
spondingderivativeat the arguments [Ak.º

C
k ; Obk /Obk ], xC

k , wk D 0, tk ,
and tk C 1 , whichever are appropriate.The 2 £ 3 matrix V T .Ob¡

k C 1/ in
Eq. (35) projects the corresponding linearized version of Eq. (22c)
perpendicular to Ob¡

k C 1 .
The second part of the propagation step uses the a posteriori

square-root information matrices at stage k and the linearized dy-
namics in Eq. (32) to compute the a priori square-root information
matricesat stage k C 1. It inverts the relationshipin Eq. (32)and uses
the result to eliminate .ºk ¡ ºC

k / and .xk ¡ xC
k / from the cost func-

tion in Eq. (22b). The � rst two terms of that cost function then get
combinedand transformedby using an orthogonal/upper-triangular
(QR) factorization.These operations yield the elements of the left-
hand block matrix in the following expression:
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where the orthogonal matrix T ¡
k C 1 is determined during the QR

factorization and causes the matrix on the left-hand side to be up-
per triangular. The matrices R¡

ww.k/, R¡
ºº.k C 1/, and R¡

x x.k C 1/ are all
square,upper-triangular,nonsingularmatrices.They have the minus
sign superscript because they are a priori square-root information
matrices at stage k C 1.

2. Measurement Update at Stage k C 1
The measurement update combines the last term in the cost of

Eq. (22b) with the transformed � rst two terms. It uses QR factor-
ization to compute

2

64
RC

ºº.k C 1/ RC
ºx.k C 1/

0 RC
x x.k C 1/

0 0

3

75 D T C
k C 1

2

64
R¡

ºº.k C 1/ R¡
ºx.k C 1/

0 R¡
xx .k C 1/

Rºº.k C 1/ 0

3

75 (37a)

2

64
zC

º.k C 1/

zC
x .k C 1/

zres.k C 1/

3

75 D T C
k C 1

2

664

©
R¡

ºº.k C1 /º
¡
k C 1 C R¡

ºx.k C 1/x
¡
k C 1

ª

©
R¡

x x.k C 1/x
¡
k C 1

ª

0

3

775 (37b)

where T C
k C 1 is an orthogonalmatrix that is determinedby theQR fac-

torization and where the matrices RC
ºº.k C 1/ , RC

ºx .k C 1/, and RC
x x.k C 1/

constitute the a posteriori state estimation error square-root infor-
mation matrix. The a posteriori state estimates ºC

k C 1 and xC
k C 1 are

determined by solving the following upper-triangular system of
linear equations:
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(38)

The resultsof the measurementupdateprepare the � lter for recursive
iteration at the next stage.

3. Filter Initialization
The � lter gets initialized as follows: ºC

0 D 0. The � rst three ele-
ments of xC

0 equal the rate estimate of the deterministic algorithm,
and the remaining � ve elements of xC

0 equal zero. RC
ºº.0/ D Rºº.0/,

and RC
ºx.0/ D 0. RC

x x.0/ is initialized to be the square root of the in-
verse of the covariance of the uncertainty in the estimate xC

0 . This
initialization accounts for the measurement at sample time t0. The
� rst � lter operation is dynamic propagation from sample time t0 to
sample time t1 , and the second operation is the measurementupdate
at time t1.

D. Linearized Observability Analysis
A linearizedobservabilityanalysiscanbeperformedon theEKF’s

system model. Such an analysis checks local observability. Local
observabilityholds if there is a unique local minimum of the least-
squares estimation problem that discardsa priori information about
the initial state and that sets the process noise to zero. Such an anal-
ysis is needed to verify the simultaneous observability of the three
body-axis angular rates and the � ve inertia matrix perturbations.

The linearizedobservabilityanalysisuses many of the sameequa-
tions and operationsas the EKF. The followingare the two principal
differences:First, RC

x x.0/ is initialized to be 0. Second, wk D 0 is en-
forced, which eliminates the wk terms from the operations that the
SRIF uses to compute the a priori square-root information matrices
for ºk C 1 and xk C 1 during its dynamic propagation. This modi� ca-
tion eliminates the � rst row and the � rst column from each block
matrix in Eq. (36). Otherwise, the observability analysis performs
the same dynamic propagationand measurement update operations
that the EKF performs on its square-root information matrices. It
does not, however, perform vector operations to compute different
estimates of ºk C 1 or xk C 1. Also, it uses the EKF’s linearized dy-
namic model, Eq. (32), and the same 8 matrices as are used in the
EKF.

The observabilityanalysis evaluates whether xN can be uniquely
determined based on the magnetic � eld direction vector measure-
ments Ob0 through ObN . It does this by propagating and updating its
square-root information matrices starting from sample time t0 and
ending at sample time tN . The system is locally observable if the
rank of RC

x x.N / is eight, that is, if RC
x x .N / is full rank.

VI. Results
A. Experimental Data from a Spinning Sounding Rocket

The attitude rate estimation algorithms of this paper have been
tested using data from the Cleft Accelerated Plasma Experimental
Rocket (CAPER). CAPER was a soundingrocket that was launched
in January1999from the AndoyaRocketRange in Norway. Its � ight
lasted over 1200 s. CAPER was a minor axis spin-stabilizedspace-
craft. It represents an interesting and challenging attitude rate esti-
mation case because its nutation mode experiencedunstable growth
from an initial coning half-angle of 20 deg to a coning half-angle
of more than 75 deg at the end of its � ight.9 This paper’s new al-
gorithms will be used to estimate CAPER’s attitude rate from its
magnetometer measurement time history, which was sampled at a
nominal frequency of 4 Hz.

The estimation results of Ref. 9 are used to provide “truth” rates
for purposesof evaluatingthe new algorithms’rate estimates.These
truth rates are not completely independentbecause Ref. 9 also uses
magnetometer data in its estimator. Nevertheless, there is a reason-
abledegreeof independencebecauseRef. 9 alsouses sun-sensorand
horizon-crossingindicator data. These data are available during the
� rst 75% of the � ight and are suf� cient to estimate attitude and rate.
Furthermore, Ref. 9 uses a more accurate algorithm, a smoother,
and it estimates attitude in addition to attitude rate. Although it is
impossible to determine the true accuracy of the Ref. 9 truth rates,
the covariance outputs of its smoother indicate a 1-¾ accuracy on
the order of 0.5 deg/s per axis or better. This assessment takes into
account the smoother’s documented conservatism vis-à-vis an in-
dependent attitude check.
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B. Results for the Deterministic Algorithm
The deterministic algorithm has been tried using various input

parameters. Good results have been obtained using a numerical
differentiation batch interval of Tderv D 1 s to compute

:

Obk , a least-
squares estimation batch interval of TLb D 12 s to compute Lb , and
the nominal prelaunchestimate of CAPER’s moment of inertia ma-
trix Im D diag(185.4, 185.4, 18.73) kg ¢ m2 . CAPER’s spin period
ranged from 4.6 s at the start of the � ight to 16.7 s at the end. The
differentiation batch interval is reasonably small compared to the
minimum spin period.The Lb estimationbatch interval ranges from
2.6 spin periods at the beginning of the � ight to 0.7 spin periods at
the end, which also seems reasonable for purposes of averagingout
noise effects.

Estimation results for this case are presented in Fig. 1. The hori-
zontal axis’s time datum is set to zero at the apogee of the CAPER
trajectory. The solid upper curve in Fig. 1 plots the magnitude of
the estimated attitude rate k!est.t/k vs t , and the dotted lower curve
plots the magnitude of the estimation error k!est.t/ ¡ !truth.t/k vs
t . Figure 1 shows that the attitude rate error is small for most of the
data run. It hovers near 5% of the true attitude rate. This indicates
excellent performance of the deterministic algorithm. During one
short period, however, there is an error spike; the magnitude of the
rate error jumps to more than 25% of the actual attitude rate at about
430 s before apogee.

This error spike can be explained in terms of the nonlinear least-
squares cost function in Eqs. (12) and (16). As noted earlier, there
can be two local minima of this quartic polynomial.The error spike
on Fig. 1 corresponds to a situation in which there is a second
local minimum in addition to the global minimum. If Lb for this
alternate local minimum is substituted into Eq. (6) to compute !k ,
then the error spike disappearsfrom Fig. 1. The error spike in Fig. 1
corresponds to cases in which the two local minima have least-
squares costs that are close to each other, that is, their difference is
less than 35% of the lower of the two costs.

One can de� ne criteria that indicatewhether the global minimum
is likely to provide the best attitude rate estimate. If the global min-
imum is unique, then it provides the best estimate. This happens in
81% of the Fig. 1 cases. Alternatively, if the second local minimum
has a cost that is at least 50% higher than the global minimum, then
the global minimum can be deemed trustworthy.This is true in 89%
of the two-minima cases. By these criteria, only 2% of the CAPER
cases are ambiguous, and only 18% of these problem cases yield
the wrong local minimum. In the cases that are not ambiguous, the
deterministic algorithm achieves attitude rate estimation errors that
are no greater than about 5% of the actual spin rate. In the other
cases, the EKF can be used to distinguish the best solution, as will
be demonstrated later in this section.

The length of the Lb estimation batch interval TLb affects the de-
terministic algorithm’s performance. A number of runs have been
done with TLb D 6 s instead of 12 s. These produce poorer results:
There are more cases in which the minimizing Lb does not produce
the best attitude rate estimate, and there is even an isolated case in

Fig. 1 Magnitude time histories of the deterministic algorithm’s
attitude rate vector and attitude rate error vector, a typical case.

which both local minima of J .Lb/ produce attitude rate errors of
30% or more. Thus, the longer batch interval improves the deter-
ministic algorithm. There is probably a practical upper limit to TLb .
Beyond this limit, the estimation accuracy may tend to degradedue
to torque errors in the Euler dynamics model or due to violations
of the assumption that the magnetic � eld remains � xed in inertial
space.

The deterministic algorithm is somewhat insensitive to the iner-
tia matrix estimate that gets used for Im . The algorithm has been
tried using both the prelaunch estimate of Im and the best estimate
of Im that was produced in the study of Ref. 9. The deterministic
algorithm performs similarly for both Im estimates, although there
are slightly fewer error spikes for the prelaunch Im , which seems
counterintuitive. This result may be caused by the Ref. 9 use of a
CAPER dynamic model that includes � exibility effects.

C. EKF Results
The EKF of Sec. V has been tested on the CAPER data. One

goal of this part of the study has been to test the � lter’s ability to
convergefrom initial rateestimates that come from the deterministic
algorithm. Another goal has been to test the accuracy of the EKF in
comparison to that of the deterministicalgorithm.A number of runs
have been tried usingvarious � lter tunings and various initialization
times during CAPER’s � ight.

The observability calculations of Sec. V have been performed
during each EKF run. The matrix RC

x x.N / has been veri� ed to be full
rank in every case. Therefore, the attitude rate vector and the � ve
inertia matrix perturbations are observable in the local linearized
sense.

The EKF has been tested in a tough situation,one with signi� cant
initialization uncertainty due to the existence of two local minima
of nearly equal cost in the deterministic rate estimation problem. A
pair of EKF runshavebeen initializedat t0 D ¡433:8 s. One run uses
the initial ! that correspondsto the deterministicalgorithm’s global
minimum, and the other run uses the initial! that correspondsto the
deterministicalgorithm’s other local minimum. At this initialization
time, theglobalminimumyieldsoneof thedeterministicalgorithm’s
worst initial ! estimates, and the other local minimum yields the
best initial ! estimate. (Note again the error spike on Fig. 1.) These
runs use the prelaunch estimate of the inertia matrix as the � lter’s
nominal inertia matrix Im0 of Eq. (24).

The � lter uses the same tuning for both of these cases. The Rºº.k/

measurement error weighting matrix equals diag(40, 40), which
corresponds to 2.9 deg of Ob direction error per axis. The Rww.k/ pro-
cess noise weighting matrix equals

p
.1tk / diag(621,621, 621, 4.8,

4.8, 1.5), where the � rst three entries of the diagonal matrix are in
units of seconds to the 0.5 power per radian and the last three entries
are in units of per Newton per meter per seconds to the 0.5 power.
The upper-left 3 £ 3 block of the � lter’s initial state square-root
information matrix RC

x x.0/ equals diag(2.9, 2.9, 2.9) s/rad, which
corresponds to a 20-deg/s initial rate standard deviation per axis,
consistent with the error in the poorer rate estimate from the de-
terministic algorithm. The lower right 5 £ 5 block of RC

x x .0/ equals
the inertia matrix perturbation covariance that results from the fol-
lowing uniform distributions in principal inertias and principal axis
orientations: §20% for the principal inertias perpendicular to the
nominal spin axis, §2 deg for the two orthogonal orientation per-
turbationsof the spin axis direction,and §45 deg for the orientation
perturbation about the nominal spin axis. The remaining elements
of RC

x x .0/ are set to zero.
Results from these Kalman � ltering runs are presented in Fig. 2.

Figure 2 plots the magnitude time histories of the estimated attitude
rate vector and the magnitude time histories of the estimation error
for the two EKF runs. These two plot types are the same as those
that appear on Fig. 1 for the deterministic attitude rate estimator.
It is obvious from Fig. 2 that the poor initialization yields much
poorer initial performance: Notice the large initial oscillations of
the solid gray curve at the top of Fig. 2 and the large initial peaks
of the dashed gray curve at the bottom of Fig. 2. The curves for
the good initial estimates, the two black curves, exhibit almost no
initial transients.Both cases eventuallyconverge,however, and their
steady-state performance is similar.



PSIAKI AND OSHMAN 251

Fig. 2 EKF magnitude time histories for the attitude rate vector and
the attitude rate error vector; a case with a poor initializationand a case
with a good initialization.

Fig. 3 Time histories of EKF estimates of inertia matrix element
perturbations.

Figure 2 shows that the rate error for the good initializationstarts
at a magnitude of about 4 deg/s and immediately drops down to
about 2 deg/s or less. By the end of the � ight, the error is less than
1 deg/s. This contrastswith the deterministicalgorithm’s error curve
in Fig. 1, which starts out oscillatingbetween 3 and 7 deg/s, slowly
decays to an average value of 2 deg/s at apogee, and continues to
have peaks of about 2 deg/s near the end of the � ight. Thus, the
Kalman � lter’s tracking accuracy is superior to that of the deter-
ministic algorithm. This level of performance is consistentwith the
� lter’s computed attitude rate estimation error covariance, which
indicatesthat the � lter’s tuning is reasonable.On the other hand, the
� lter’s estimated measurement error time history, ºC

0 ; : : : ; ºC
N , ex-

hibitscomponentstandarddeviationsthat are about10 times smaller
than the 2.9-deg-per-axistuningvalue that the � lter uses.Thus, there
may be room for improvement in the � lter’s tuning.

Both initializations yield convergence in Fig. 2, but it would be
preferable to use the initial rate estimate that yields smaller error
transients, that is, the estimate from the deterministic algorithm’s
second local minimum. The superiority of this initialization can
be determined from the EKF’s estimated measurement error time
history, ºC

0 ; : : : ; ºC
N . The best initialization yields initial transients

in the ºC
k history that have signi� cantly smaller peak values than

the transientswhich are caused by the other initialization.Thus, the
strategy for initializing the EKF is to try two parallel � lters if the
deterministic algorithm yields two distinct local minima of nearly
equal cost. The attitude rate estimate is then chosen as the output of
that � lter run that yields the smallest initial transient oscillations in
its ºC

k history.
Figure 3 illustrates the EKF’s ability to estimate the inertia ma-

trix corrections of Eq. (24). It shows the time histories of the � ve
corrections for the � ltering run that corresponds to the good ini-
tialization case of Fig. 2. Some of these correction terms undergo

nearly step changes at the start of the � ltering run, but, consistent
with the assumption that they are constants, their rates of change
tend to slow down as the � lter nears the end of the data batch. The
� nal estimated inertia matrix is closer to the Ref. 9 truth estimate
than is the initial matrix Im0 , speci� cally, 77% closer as gauged by
the induced matrix two-norm. Thus, the EKF does a reasonable job
of estimating its inertia perturbation states.

The performanceof theEKF hasbeenevaluatedusinga numberof
different inputs. It has been initializednearer to the end of the � ight.
Different tunings have been tried. Different values of Im0 have been
used to initialize the inertiamatrix estimate.The performanceof the
� lter is not affected signi� cantly by such changes. A slowing of the
� lter producesmodest accuracy improvements in the !(t/ estimate.
This slowing is achievedby an increase in the elementsof the Rww.k/

matrix. An improved value of Im0 reduces the magnitudes of the
inertia correction transients. Initialization of the � lter with angular
rate estimates from the deterministic algorithm always produces
excellent performance, except for the case noted in Fig. 2, which
corresponds to the error spike in Fig. 1.

A surprising aspect of these results is that the EKF works well
using a rigid-bodymodel of the spacecraft.The main point of Ref. 9
is that a rigid-body model is inadequate for attitude estimation for
the CAPER mission because of the presence of signi� cant � exi-
ble body effects. One might think that the present results contradict
those of Ref. 9. This seeming discrepancy is easily resolved, how-
ever. The Ref. 9 dif� culty with a rigid-body model stems from its
� lter/smoother estimating both attitude rate and attitude. The cur-
rent � lter only estimatesattituderate. If one integratesthe difference
between the two studies’ attitude rate estimates, then one quickly
builds up attitude errors of 20 deg and more. This is far more error
than was noted for the attitude estimates of Ref. 9. The current � lter
is able to achieve reasonable attitude rate estimation performance
becauseit can toleratesmall rate errors that are causedby the inaccu-
racy of its rigid-body model. The � lter/smoother of Ref. 9 does not
have this luxury because these small rate errors integrate to become
excessively large attitude errors.

VII. Conclusions
Two new attituderate estimationalgorithmshave beendeveloped

for use on spacecraft, a deterministic algorithm and an EKF. Both
of them work with a time series of Earth magnetic � eld direction
measurements from a magnetometer,and both use Euler’s equation
for the attitude dynamics of a rigid body with momentum wheels.
The deterministic algorithm uses the kinematic equation for the
Earth’s magnetic � elddirectionin spacecraftcoordinatesto estimate
the two components of the spin rate that are perpendicular to the
magnetic � eld. It uses Euler’s equation to solve for the remaining
component via a global nonlinear least-squares batch estimation
technique. The EKF estimates the attitude rate and perturbationsto
� ve of the spacecraft’s six inertia matrix elements. It works with
Euler’s equation and the magnetic � eld kinematics equation and
includes measurement error states. The propagation procedure for
these error states uses multiplicative-typeoperations.

These two algorithms have been evaluated using � ight data from
a spinning sounding rocket whose spin rate started at 78 deg/s and
decayed to 20 deg/s by the end of the � ight. The deterministic al-
gorithm achieves accuracies ranging from 7 deg/s at the start of the
� ight down to 2 deg/s near the end, except in unusual cases when
its nonlinear least-squares solver picks a wrong local minimum.
Convergence of the EKF can be ensured by using the deterministic
algorithm’s output to initialize the � lter’s rate estimate. The � lter’s
measurement error estimates can be used to distinguish between
good and bad initializations in cases where the deterministic algo-
rithm yields two distinct local minima. The EKF’s accuracy ranges
from 2 deg/s at the start of the � ight to better than 1 deg/s at the end.
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