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Maximum a Posteriori Image Registration/Motion Estimation
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Technion—Israel Institute of Technology, Technion City, Haifa 32000, Israel

A novel method is presented for on-line, recursive image registration/motion estimation. Comprising a Kalman
filter and an interlaced new image registration algorithm, the method enables the estimation of aircraft motion
from a sequence of terrain images, acquired by an airborne, down-looking electro-optical sensor. Contrary to other
methods of vehicle motion estimation that are based on the conventional mean-of-squared-differences (MSD) image
registration algorithm, the new method utilizes the maximum a posteriori (MAP) estimation methodology to draw
statistical information from the prediction level of the Kalman filter. The resulting image registration algorithm
is thus rendered more accurate and robust with respect to loss of lock (measurement divergence). A small error
statistical analysis shows that, under reasonable conditions, the new MAP algorithm is unbiased and efficient, and
its estimation error covariance is smaller than that of the ordinary MSD algorithm. The superiority of the new MAP
algorithm over the conventional MSD algorithm was substantiated via an extensive experimental investigation,

using real aerial photographs.

I. Introduction

HIS paper is concerned with the problem of on-line and recur-

sive estimation of vehicle motion from a sequence of terrain
images, acquired by an airborne, down-looking electro-optical sen-
sor. Deriving motion information from visual data is a well-known
and important problem in many applications, e.g., in the design of
completely passive and autonomous navigation systems!-? and in
computer vision and robotics.® Essentially, this estimation task is
performed by solving in a recursive manner the problem of image
registration,* defined as the following: given a sequence of image
brightness arrays, acquired by an onboard sensor, estimate the rela-
tive shift between each pair of consecutive images in the sequence.
Since the interframe shift acquired at a fixed time interval is linearly
related to the ratio of ground velocity to ground altitude (v/h),
this ratio can be estimated by recursively solving the image reg-
istration problem for each pair of frames in the acquired image
sequence of the changing terrain. Moreover, by aiding this estimate
with additional measurements, obtained from other onboard sensors,
the ground speed can be estimated and used in an inertial navigation
system.

Most methods, which use visual information to estimate vehicle
motion, compute an estimate of the two-dimensional field of instan-
taneous velocities of brightness values (gray levels) in the image
plane, defined as the optical flow. When used in conjunction with
added constraints or information regarding the scene and/or camera
motion, the estimated optical flow yields an estimate of the actual
three-dimensional relative motion between the scenery and the sen-
sor. Methods to estimate the optical flow field lie within two general
classes. Gradient-based methods® compute an estimate of the optical
flow field over the entire image, utilizing a relationship between the
motion of surfaces and the derivatives of image brightness. Feature-
based approaches® locate and track over time a set of highly dis-
criminatory, two-dimensional features (regions) in the images corre-
sponding to three-dimensional objects in the scene, such as corners,
occluding boundaries of surfaces, etc. The method presented in this
paper belongs to the category of feature-based methods.

Optical flow computation is, in general, expensive and in most
cases rather noisy. To alleviate the computational burden problem,
image registration methods have been developed* that utilize only
a small portion of the image, so that only a local estimate of the
optical flow is computed using some subset of the image pixels. To
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overcome the noisy character of the optical flow estimate, atten-
tion has been recently focused on filtering the output of the optical
flow estimator by utilizing this estimator as a generalized sensor
within a recursive Kalman filtering framework.>”® The Kalman fil-
ter performs an optimal fusion of the information derived from the
optical flow with prior information regarding the vehicle motion.
Since a Kalman filter is used, the resulting vehicle motion estimate
is inherently based on information contained in the entire image
sequence (measurement history), rather than just on information
contained in isolated pairs of images. Moreover, the optical flow
measurements are filtered, and the motion estimation error is thus
statistically decreased.

This paper presents a new image registration/motion estimation
algorithm, that joins a Kalman state estimator with an optical flow
processor similar to the mean-of-squared-differences (MSD) shift
estimator used in Ref. 2. In that regard it belongs to the class of
Kalman filter-based motion estimation algorithms discussed earlier.
However, whereas in other members of this class the shift estimator
is just used to drive the Kalman filter measurement update, e.g.,
Ref. 7, in the new scheme the Kalman prediction statistics are fed
back to drive a modified image registration algorithm. This modi-
fied shift estimator fuses the a priori information provided by the
Kalman predictor with the optical flow information to form a maxi-
mum a posteriori (MAP) estimate of the interframe shift. This MAP
estimate is then utilized, in the conventional manner, by the mea-
surement update level of the Kalman filter, along with measurements
from other onboard sensors. Operating on a modified cost function
which contains the a priori information contributed by the Kalman
predictor, the new MAP algorithm is rendered more robust than
the conventional shift estimator, with respect to “loss of lock” and
“false lock.” ®

In the next section, the image statistical model is defined, and
the interlaced Kalman filter/MSD estimator scheme is discussed. A
small error statistical analysis of the MSD shift estimator is pre-
sented in Sec. IlI, followed by a derivation and analysis of the
new Kalman filter/MAP estimation scheme. The experimental pro-
gram performed to demonstrate the performance of the new algo-
rithm is presented in Sec. V. Concluding remarks are offered in the
last section.

II. Motion Estimation via MSD Image Registration

In this section the image statistical model is presented. The clas-
sical MSD image registration algorithm is discussed along with its
usage within the framework of a Kalman motion estimator.

Statistical Image Model
In what follows, the terrain image is assumed to be projected onto
the image plane of a stabilized, down-looking electro-optical sensor.
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Fig.1 Image model.

Because of the discrete nature of electro-optical photography, the
image space X is taken as an L, x L, two-dimensional array of
digital picture elements (pixels). The location x of each pixel in
the image space is determined using an image coordinate system,
as shown in Fig. 1. The notation x, = (xp, y,)7 € X is adopted.
These pixels may each assume one of m brightness (gray) levels.
It is assumed that the sensor acquires a sequence of such pictures,
at a rate of one picture per T time units. Let Fy(x) denote the
two-dimensional gray-level array representing the noiseless picture
of the scene taken at time NT. Fy (x) is assumed to be a discrete
representation of a deterministic but unknown, smooth (at least twice
differentiable in each direction) two-dimensional surface. Let §(N)
be the true shift (in units of pixels) between two successive pictures,
Fy_i(x) and Fy(x), as shown in Fig. 1. Obviously,

Fylxp, +§(N)] = Fy_(xp) 1)

for s(N) such thatx, + §(N) € X

It is assumed that the image is corrupted by an additive noise v,
which is due to electronic/thermal camera noise, camera vibrations,
and differences between successive pictures due to parallax in non-
planar scenes.* Let vy (x ») denote the random noise at pixel x, of
the picture taken at time N T'. The picture noise is assumed to be a
temporally and spatially stationary, Gaussian distributed, zero mean
white random field, independent of the pixel brightness level, i.e.,

o’ fors=0andi = j
| o

Elv;x)vjx +5)] = [() otherwise

Note that in Ref. 4 the picture noise was assumed to be spatially ex-
ponentially correlated. The assumption of a spatially white random
field, also used in Ref. 10, corresponds to the more realistic situ-
ation of a picture noise having a much wider bandwidth than that
of the scene. The assumption that the picture noise is temporally
uncorrelated regardless of its source is justified in Ref. 4.

Letting Iy (x) denote the measured image (two-dimensional gray
level array) taken by the electro-optical camera at time N7, the
previous assumptions yield

In(xp) = Fy(xp) + vy (xp), 0<IyGxp)=m-—-1 (3)

Mean-of-Squared-Differences Image Registration Algorithm

The basic image registration algorithm considered in this paper
is a pixel-based (iconic) optical flow estimator.*’ This algorithm
estimates the shift between two successive pictures by searching for
a window in the second image, which most resembles (in a mathe-
matical sense to be defined in the sequel) a predefined test window
in the first image, as shown in Fig. 1. Using a Fisher approach,!! the
shift §(N) between the two consecutive frames Iy_;(x) and Iy (x) is
considered an unknown but otherwise deterministic parameter. Let
the test window be defined as a subset of ny pixels Xy € &, Also,
define an admissible shift as a shift s satisfying

X, eXr =x,+se X

Let S be the space of all admissible shifts. The MSD algorithm
estimates the shift between two successive pictures by performing a

two-dimensional search for the minimum of a quadratic “similarity”
function, over all admissible shift parameters s € S, as follows:

1
Susp(N) = argmin = 3 [n(x, +5) = lvaGn)F - @)

xpeXT

An efficient, two-step minimization procedure? was implemented
in this research to evaluate §ysp (M) in an on-line manner. According
to this algorithm, the test window X’ is taken as an n, X n, pixels
rectangle, centered about the origin of the picture coordinate system
(thus minimizing pixel distortion). For this particular test window,
the MSD shift estimate takes the following form:

ny

A 1
Suso(N) = argmin —— 3 > ~(Iwl(x, y)" +]

neny

i=1 j=l1

—Iy-1l(xi, y)T1)? &)

The cost function minimization procedure consists of the follow-
ing two steps.

1) A global search is performed with respect to integer values (in
units of pixels) of the shift. A crude estimate of the shift, denoted
s*, is found such that the value of the cost (5) is a local minimum in
a 3 x 3 pixel neighborhood of s*. The estimation error associated
with s* is of the order of one pixel. To obtain subpixel accuracy, the
next step of the minimization is carried out.

2) A parabolic surface is fitted through the nine cost function
values that have been computed in the 3 x 3 neighborhood of s*.
The minimum of this surface is found using a Newton-Raphson
method. A second-order surface was experimentally determined to
be satisfactory for test windows larger than 8 x 8 pixels. 2

Notice that, since only a small subset of the picture elements is
used, a “good” initial condition is required to ensure convergence of
the global search performed in the first step of the minimization (a
divergence of the search might lead to a false lock or loss of lock).
The MAP procedure, presented in the sequel, utilizes statistical in-
formation provided by the prediction level of the Kalman filter to
alleviate this problem.

The conventional interlaced Kalman filter/MSD estimator scheme
is presented next.

Shift Estimator Driven Kalman Filters

The conventional image registration/motion estimation scheme
has been proposed by several authors.>>71° A key feature of this
scheme is the usage of the MSD shift estimator as a generalized
sensor, whose output is statistically fused with the output of other
sensors via a Kalman filter. The temporal variation of the shift has
to be defined for that purpose, using a dynamic model which incor-
porates available information regarding the motion of the platform
(e.g., constant velocity motion, etc.). Since, as will be shown later,
the optical flow measurements are temporally correlated, the state
estimator to be designed has to take this fact into account. It should
be noted in this regard that, although the correlation between suc-
cessive measurements has been previously pointed out,” to the best
of the authors’ knowledge it has been incorporated into the design
of the corresponding Kalman filter only by Bar-Shalom et al.,'’ in
the context of target tracking via an imaging infrared sensor.
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Fig.2 Motion Estimation via image registration with Z (+) the a posteriori estimate and E (—) and §(—) the a priori estimates.

The combined estimation scheme is shown in Fig. 2, where the
state of the total dynamic system (comprising the vehicle, payload
dynamics, etc.) is denoted ¢. Note that the input from the Kalman
prediction step into the shift estimator, namely, the a priori shift
estimate, serves only as an initial starting point for the global search
of the MSD estimator.

III. Statistical Analysis of the
Mean-of-Squared-Differences Shift Estimator

This section presents a small error statistical analysis of the con-
ventional MSD estimator. The main results are summarized in the
following theorem.

Theorem 1.  Assume the statistical image model presented in the
previous section. Assume also that no false lock or loss of lock has
occurred (that is, the shift estimator operates in the vicinity of the
true shift). Then, the MSD estimator is unbiased and efficient. O

Proof. To assess the statistical efficiency of the MSD estimator,
its estimation error covariance has to be compared to the theoretical
lower bound given by the Cramer-Rao lower bound (CRLB). Thus,
in the first part of the proof, the CRLB is computed, based on the
information content in the two successive pictures that are used to
estimate the shift. Then, in the second part, unbiasedness is proved
and the MSD estimation error covariance is computed and compared
to the CRLB.

Explicit computation of the CRLB requires the probability den-
sity function of the measurements (conditioned on the shift param-
eter). To this end, the concept of “measurement” (involved with the
process of optimally allocating an area within the second picture
that most resembles the test window contained in the first picture)
is first defined.

Let the true two-dimensional shift between the two frames under
consideration be §(N), and let A7 be a rectangular test window
of ny x n, = K pixels (to facilitate the notation, the shift time
dependence will be omitted in the sequel unless explicitly needed).
To simplify the ensuing development, let x(i, j) denote the location
of the pixel whose coordinates, in the picture coordinate system, are
(i, yj), e, x(, j) 2 (x, ¥;)T. For an assumed shifts = (s, s,)7,
the measurement at the pixel located at x(i, j) is defined as the
shifted image difference, i.e.,

zwlx G, ). s12 IvleG, ) + 81— In-aleG, )] (6)

Performing K measurements (for the same value of the assumed
shift) at K different pixels, we define

Z[\K{ é {ZN[x(il’ jl)! s]a ZN[x(in j2)s S], ey ZN[x(iK$ jK)v s]}T (7)

as the total measurement vector. With these definitions on hand,
the CRLB is computed next. As is well known, the estimation error

covariance of any estimator § of the true interframe shift s is bounded
by the CRLB as follows:

cov{§ —5} > F!

where F is the Fisher information matrix (FIM). For an unbiased
estimator, the FIM is given by

Fu(s) = E{(Vslog pIZ¥ | s1)(V; log p[ZK | s])7)
= —E{V,(Vlog p[Z§ | s]"} ®)

where p[ZX | s]is the conditional probability density function (pdf)
of the measurements, given the shift s (the gradient V; log p[ZX | 5]
is sometimes termed score). Since vy_; and vy are Gaussian dis-
tributed and statistically independent, then, using Eq. (3) yields

planlx(, j),s11 s}~ N (Fylx(, j)+s1 = Fy_1[xG, N1, 20%) )

Assume that K independent measurements are available. Since the
measurement noise is a Gaussian distributed, spatially and tem-
porally white random field, these measurements are independent,
with identical variances and different means. The joint conditional
density function is obtained as a product of the marginal densi-
ties, hence,

I &
log pIZ} 51 = C(K,0) = 7= D D lanlx(i. j).s]
i=1 j=1
~(FylxG, j) +51 = Fy_lxG, HDI? (10)

where C(K, o) is a constant that does not depend on the shift s. The
score and the Hessian become, respectively,

nx

1 -
Vi log plZf | 8] = 5 D0 lanixG, ), s)

i=1 j=1
— (Fylx(, j) + 5]

— FyoalxG, DIV Fylx G, j) +s] an

Tix

_ 1 -
VilVslog plZf s = 55 D Y (~(VeFulxG, j) +s])
i=1 j=1

X (VsFylxG, j) +sD7 + lzn[xG, /), 5]
— (Fylx@, j) + sl

= Fy1[x(, DDIVs(VsFylx(, j) +sDT) (12)
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Taking the expected value of Eq. (12) yields the following expression
for the FIM:

ny ny

Fn@) =5 ZZ(V Flx(, J) +slls=se)
i=l j=
X (Ve Fy[xG, j) + 8llsmsan)” (13)

Equation (13) highlights the role of the brightness gradient as a
directional measure for the information content in the picture. Thus,
a dull scenery, characterized by small gradients, has a relatively low
information content, and vice versa. Note that in practice, because
of the discrete nature of the acquired picture, the brightness gradient
may be approximated via finite differences.

Returning to the proof of the theorem, rewrite the estimator as

Smsp(N) = arg msin Jumsp{s) (14)

where Jysp (5) is the cost function associated with the MSD estima-
tor:

nx

ZZ(IN[x(z D481 = IyalsG, DD A3

Jusp(s) =
xMy
Using Eq. (3) in Eq. (15) yields

nx

Jumsp(s) =

— Fylx(, j) +5]

+ onlx@, J) + 51 — vy xG, HD? (16)

Since the Hessian of the surface function Fy [x(i, j)-+s] is bounded,
then

(s = 5T (VY Fylx (G, j) + s =) —5) ~ o(As)  (17)

where As&s — 5, and o(e) denotes a function satisfying
lim,o(0(g)/&) = 0. A Taylor expansion of Fy[x(i, j)} + s] about
Fylx(i, j) + 5] therefore yields

Fylx@, j) + 51— Fylx(, j) +5]

= (Vs Fulx(, j) +5lls=s)" (s — 5) + 0(As) (18)

where (V; Fy[x(i, j) + 5] |s=5) denotes the gradient of Fy[x(i, j)+
s] ats = §. Assuming also that vy [x(i, j) 4 s] can be approximated
by vy[x(i, j) + §] for s — §, yields

Jumsp(s) =

Z Z[(v FylxG, ) +sll=9)" (s = 5)

Xyl

+0(As) + vy[x(, j) + 81 — vy1lxG, HIP 19)

The necessary condition for the minimum of Jysp(s) is:

‘2 Z{[(v FylxG, ) +5lles)”

X y i=

VsJusp(s) =

X (s —5) + o(As) + oylx (i, j) + 51 — vn-i[xG, ]
x (Vs Fylx(i, j) +5lls=s + O(As)} =0 20

where O(g) denotes a function satisfying lim,_,(O(g)/e) < o0.
Noting that, for s — §, o(As) and O(As) are dominated by
(VsFylx(i, j) + slls=)7 (s — §) and VFy[x(, j) + 5]ls=s, respec-
tively, we have

1 nx ny
[n — D (VeFylx(i, J) + slles) (Vo Pyl G, ) +S]|s=§)T]
FEY =t j=1
X (6 =8+ — ZZ(vN[x(z PRI B ()))
xfty
X (Vs Fylx(i, j) +slles) = 0 @D

Define the vector

i Z(vw[x(l J)+5]

xy‘-

n(N) :=

—vy_alx(@, DDV Fylx(, j) + s]ls=s) (22)
Then, noting Eq. (13), we have

Susp(N) = 5(N) — == yf_ ®n(N) 23

Now, unbiasedness of $wsp(N) follows by observing that
E[n(N)] = 0. Moreover, defining the estimation error as

Susp(N) 25(N) — Sysp(N) ©4)

and computing the covariance of the estimation error yields

2
nxny] Fy ®ERMNIRT(NMIFL'E) (25

cov{Smsp(N)} = I: 252

To compute E{r(N)n” (N)], note that the picture noise is a spatially
and temporally white random field; hence,

Eln(N)n" (N)] = y)z Z Z(v Fy[xG, ) +sles)

202 1
X (Vs Fylxe(i, ) +sll=s)” = [n y] Fn® (26)
Using Eq. (26) in Eq. (25) finally yields:
covfSmsp(N)} = F' () @7
which completes the proof. 0O

As is well known, an efficient estimator can always be derived
using a maximum likelihood (ML) approach.!? The following the-
orem shows that the MSD estimator can also be characterized as a
small error approximation of an ML estimator.

Theorem 2. Operating in the vicinity of the true shift (assuming
that no loss of lock or false lock has occurred), the MSD estimator
can be characterized as an ML estimator in the following sense:

SmL(N) = arg max log psny(ZY | 5)

where p;n(Z% | s) denotes the joint conditional pdf of the K
measurements (corresponding to the K pixels in the test window),
whose functional form is obtained by assuming s = 5(N) prior to
acquiring the measurements.

Proof. An ordinary ML estimator satisfies

SML(N) = arg msax log p[Zﬁ | 5] (28)

which, using Eq. (10), becomes

S (N) = arg mm Z Z[szlx(i, 75l
i=1 j=i
— (Fylx@, j) + 81— Fy_alxG, DDP (29)

A direct minimization of the right-hand side (rhs) of Eq. (29) would
require the knowledge of the unknown brightness pattern of the
ground scenery, Fy_1[x(i, j)]. However, a Taylor expansion of the
conditional mean term about the true shift yields

Fy_lxG, j)]
= (Vs FylxG, ) +slls=)" (s — §) + o(As) (30

Assume further that the search in Eq. (29) is performed over shifts
satisfying s — §(N). Since the gradient of Fy is bounded, the rhs

Fylx@, j) +s1 -
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Fig.3 MAP motion estimation Z (+) the a posteriori estimate, Z (—) the a priori estimate, I1(+) the a posteriori estimation error covariance and IT(—)

the a priori estimation error covariance.

of Eq. (30) is O(As) and, therefore, is dominated by zy[x(i, j), 5.
Using Eq. (6) yields

ny Ny

S (V) =argmin ) " Y Glx(G, )sD’ G

i=1 j=1

which may be obtained directly by formally setting s = §(N) in
pIZ¥ | s]in Eq. (28). Equation (31) results in

nx 1y

Sw(N) = argmin ) " (Inle(i, j) + 51— Iy-ilxGi, DI’

i=1 j=I

= arg msin Jusp(s)
whence §yp.(N) = $msp(N), and the proof is completed. ]

Correlation Between Consecutive Measurements

To enable the utilization of the shift estimator as a sensor in an
interlaced Kalman filter/MSD estimator motion estimation scheme,
its statistical characteristics have to be evaluated. The purpose of the
ensuing development is to show that the shift estimation error (con-
stituting the sensor’s “measurement noise” in the overall estimation
scheme) is temporally correlated and to compute that correlation.

To compute the correlation between two successive measure-

ments, define these measurements as

ZE = Iylx +5(N)] = Iy-y () (32

Z 2 Ivalx +5(N) + 5N + D] — Iyl +5(V)] (33)

i.e., it is assumed that the second frame is shifted by §(N) with
respect to the first frame, and the third frame is shifted by s(N + 1)
with respect to the second. Notice that Iy [x + §(#)] is used by both
measurements, which brings about the correlation between them.
Using Eq. (23) and noting that the MSD estimator is unbiased yields

cov{Smsp(N), Smsp(N + 1)}

2
- [rtz:; ] F7 G EmN)nT (N + DIF5L, ) (G4

To compute E[n(N)n” (N + 1)], note that the statistical character-
istics of the picture noise render
E{(vyIx(, j) +8(N)] — vy nalxG, )HD

X (Uy1lx(l, m) +5(N + D] — vylx(l, m)D}

_ [ —o? forl, m such that x(i, j) +§ = x(I, m) 35)

0 otherwise

Hence, using definition (22) yields
E[n(N)nT (N + 1)]

2 ny Ny
= —[n:’ny] 2D (VeFlxG. ) +$llomsin)

i=1 j=1

X (Vs Fya[x G, J) +5(N) + 8)ls=svny)” (36)
Now, according to Eq. (1)

Fyplx@, j) +5(N) +5(N + D] = Fy[x(, ) +5(V)1 37)
Substituting Eq. (37) into Eq. (36) yields

2

2
Eln(N)n? (N + 1)] = —2[n° ] Fn ) (38)

xy
Using Eq. (38) in Eq. (34) finally gives
cov{Emsp(N), Susp (N + D} = =3 751, 6) 39

This correlation between measurements has to be accounted for
when designing an appropriate Kalman filter.

IV. Maximum a Posteriori Image Registration

Similarly to the estimation scheme described in the previous sec-
tion, the MAP image registration algorithm developed in this section
isregarded as an optical flow sensor by the Kalman motion estimator.
However, whereas in the previous scheme only a weak feedback ex-
isted between the Kalman filter and the MSD estimator, in the MAP
algorithm the prediction statistics provided by the Kalman filter are
used to smooth the estimates generated by the optical flow estimator,
thus rendering an improved estimation performance and enhanced
robustness.

The Fisher approach underlying the MSD estimator raised a prob-
lem, since no rigorous mechanism was provided for the optical flow
estimator to utilize any prior information regarding the interframe
shift, such as the prediction statistics generated by the Kalman fil-
ter. Note, in that regard, that in Ref. 2, the predicted shift computed
by the time-update stage of the Kalman filter was used by the shift
estimator in a heuristic manner, as an initial condition for the global
search. No statistical significance was attached to this estimate.

Using a Bayesian estimation methodology, on the other hand, the
interframe shift is considered a random variable, having an a priori
probability density that reflects the available information regarding
that variable prior to conducting the measurement. This informa-
tion is provided to the shift estimator by the prediction stage of
the Kalman filter. The utilization of the a priori estimate and its
prediction error covariance is performed in the combined estima-
tion scheme according to Fig. 3, where ¢ denotes the state of the



Downloaded by TECHNION (Elyachar Central Library) on December 22, 2014 | http://arc.aiaa.org | DOI: 10.2514/3.21318

1120 OSHMAN AND MENIS: MAXIMUM A POSTERIORI IMAGE

total dynamic system and IT denotes the associated estimation error
covariance.

Derivation
Let Z¥ (N) denote the measurement history, that is,

ZEWNy= (2K, 25, ..., Z5) (40)

where ZX is the measurement vector at time N (comprising the K
pixels measured in the test window). A discrete-time Kalman filter
is assumed to provide the shift estimator with a priori information
(predicted shift and prediction error covariance). Denote the pre-
dicted shift, after processing N — 1 measurements, §y(—), and its
prediction error covariance Py (—). It is also assumed that the pdf
of the predicted shift estimate, comprising the information rendered
to the shift estimator, is Gaussian, i.e.,

pls(N) | ZX(N — D] ~ NGn(-), Py(-)) @1
The MAP estimate of the shift is found via

Smap(N) = argmax pis | 2K )

Using Bayes rule in Eq. (42) yields

pIZy |s, ZX(N = Dlpls | 2X@V - 1]
plZy | ZX(N - D))

pls | Z2X(W)) = (43)

Given the shifts, ZX is independent of Z¥ (N — 1), hence,

Suap(N) = arg max(log p(Zy | s1+log pls | Z*(N — D] (44)

Employing Egs. (10) and (41) yields

Smap(N) = argmax{4 5 ZZ[ZN[x(l )5l
~ (Fylx(, j) + 81 = Fy_1leG, HDP

1 A
—56- VNP ()6 - SN(—))] 45)

Assuming that s — §(N) and noting that Fylx(i, j) + s] —
Fy_1[x(i, j)]is dominated by zx[x(i, j), 5] (as observed in the pre-
vious section), yields

nx

D Z(IN[x(: )+l

Smap(N) = arg msin {
i=1 j=I1

= IyalxG, HD? + (s = Sn (=) Py ()6 — 8y (— ))] (46)
which renders the sought for MAP algorithm.

Discussion

The actual implementation of the MAP algorithm is similar to
the implementation of the MSD algorithm, except that the modified
cost function (46) is used. The MAP algorithm differs from the MSD
algorithm by the addition of the a priori information, which is appro-
priately weighted by its statistical significance. Moreover, by virtue
of the numerical properties of the quadratic form, the robustness
of the MAP algorithm with respect to loss of lock is considerably
improved over that of the conventional MSD algorithm.

Statistical Analysis
Theorem 3. Under the assumptions underlying Theorem 1, the
MAP estimator is unbiased and efficient. Moreover, its estimation
error covariance is smaller than that of the MSD shift estimator. O
Proof. To assess the efficiency of the MAP shift estimation al-
gorithm, the CRLB associated with the estimation of a random shift

is computed. The information matrix for a random shift vector is
given by

In(s) = —E{Vs(Vslog plZy | sDT}

— E{V,(Vslog pls | ZX¥(N - DD} CY))

The first term on the rhs of Eq. (47) is recognized to be the FIM for
an unknown but deterministic shift, Eq. (13). Evaluating the second
term on the rhs for a rectangular n, x n, test window resuits in

_ 1 ny ny o
VG = 575 D D VeFxlxGo ) +8lewsn)
i=l j=I

X (VeFy G, J) + 8lls=s0)” + Py’ ()

=Fy@E + Py (-) (48)

Comparing the last result with the FIM obtained for the nonrandom
shift, it is noted that, as can be expected, the addition of a priori
information decreases the lower bound. Obviously, any efficient
estimator will, in this case, outperform the MSD estimator.

Returning to the MAP estimator, the MAP cost function is
rewritten as

Ise(s) = 5 2ZZ(IN[x(z D +581 = IyalxG, HD?
=1
+6 = $n ()" Py ()6 — 8x (=) “9)

Using Eq. (15) this cost function is related to the MSD cost function
according to

are(®) = 2 Iusp(®) + 5 =3 ()"
x Py (=)(s = 8w(=)) (50)

A Taylor expansion of the quadratic form on the ths of Eq. (50)
about the true shift s(N) yields

Imap(s) =

+ GW) =8y (DT P (5)EWN) = 8y (-)
+26(N) =8y ()T Pyl (=)(s —5(N))
+ (s =5V Py (=) (s —5(N)) 61Y)

whence

Vedwar(s) = 2 yV Jusp () + 2Py () GN) — $n(-))

+ 2P,;‘(—)(s —5(N)) (52)

The necessary condition for a minimum of Jysp therefore yields

o ZVJMSD(S)+2P '(EIN) =8y (=)

+2P7 (=)(s —§(N)) =0 (53)
Employing Eq. (21) yields

[02 > Z(v Fy[xG, J) + Slmiim)

i=1 j=li

X (VeFylxG, j) + s]‘s:E(N))T] (s —5(N))

nx

ZZ(vN[x(z D481 = oyalxG, HD

i=l j=
X (Ve Fylx(i, J) + 8lls=sm) + 2P5 (<) G(NV)

—8n (=) + 2P (=) —5(N) =0 (54
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Using definitions (13) and (22) in the last equation yields
Smap(N) = §(N) — (FxG) + Py' (-=)7"

x [nz;zy n(N) + P,;1<—>EN(—)] (55)

where the Kalman filter prediction error is defined as
~ A _ A
Sn(—)=S5(N) —3n(-)
Defining analogously the MAP estimation error as
Saap (V) =5(N) = $uar(N)

yields

Sue (V) = (Fv® + P3'(9) ™ ("2:; n(N) + P,;‘(—)in(—i)
(56)

It follows that the MAP estimator is unbiased, since, as noted previ-
ously, E[r(N)] = 0, and the Kalman predicted estimate is unbiased.
Moreover, computing the covariance of the estimation error yields

E{[S(N) — Smap(N)IF(N) — Smar(W)]}
nehty

= Fu® + Py () teov| 22

n(N) + P,;‘(~)§~(—)}

X (FyG) + Py (=)™ 5N

Butn(N) is independent of the prediction error § (—), hence, using
Eq. (26) finally yields

E [ FV) — Saap (VDIEW) — Swiap (V) }

=Fn@+ Py (-n7" (58)
The last result shows that the MAP estimator is efficient under the
theorem’s assumptions, thus completing the proof. =]

Correlation Between Successive Measurements

To compute the correlation between successive measurements,
the procedure used in Sec. I is followed. Since the MAP estimator
was shown to be unbiased, then

cov{Smar(N), Smar(N + D} = E{Smar(N)Syap(N + 1)}

= (FnG) + P;‘<~))—1E{ ["—"fﬂn(zv) + P,;‘(-)EN(—)]

202

N _ . T
x| 2oz + 1)+ Pty ()i )] ]

X (Fya1® + Py (=07 (59

Employing the orthogonality of the Kalman filter prediction error
Sy41(—) to ZE yields

202

E{ ["""yn(m + P,;‘(—)EN(—)]

T
x| amzn(v + 1)+ Pty (i ()] ]

_ [ Bxny : T
- [202] Eln(N)n” (N + 1]

+ Py (D) EBN (=554 (1P (5) (60)

The prediction error is a first-order Markov process, with

EBn(D8y (D)1= Py(DII — KyHyl' @y (61)

where Ky, Hy and @y are, respectively, the Kalman gain, the mea-
surement matrix and the transition matrix. Using Eqgs. (38) and (61)
in Egq. (60) results in

E{ [E‘ﬂnw) + P;‘(—)EN(—)]

202

T
x [ S22 + D + Prh ()] ]

1
= —5.7:1\;(5) +[I — KyHy]" @3 Py}, (-) (62)

Substituting Eq. (62) into Eq. (59) gives
cov{Syar(N), Smar(N + 1)}
= (Fv@® + P (=)' (-3 Fv(®
+[I — KyHyY @3 Pyt () (FriiB) + Py (=071 (63)

This expression can be somewhat simplified if the following defini-
tion of Cy, the Rauch-Tung-Striebel fixed-interval smoother gain'?
is used:

Cn = Py()®% Pyl (=) (64)
Using definition (64) in Eq. (63) finally yields
cov{Suap(N), Syap(N + 1)}
= (FvG) + Py () (L F @) + Py (-)Cw)

X (Fn1® + Py (=)' (65)

which is the required result.

V. Experimental Investigation

An extensive experimental investigation was carried out at the
Flight Control Laboratory of the Technion. The experimental pro-
gram was designed 1) to investigate the properties of the estimators
previously presented under conditions which are close to reality (in-
volving unmodeled disturbances and parameter uncertainties) and
2) to demonstrate the superiority of the MAP estimation scheme
over the conventional Kalman filter/MSD estimator scheme.

Experimental Setup

The experimental investigation utilized a two-axis light table,
controlled by a 16 MHz Motorola 1131 real-time computer (using an
MC68020/MC68881 CPU/FPU combination). The electro-optical
sensor was a Javelin Charge Coupled Device camera, with an image
size of 573 x 573 pixels. The image was captured by an FG100 image
digitizing card, which sampled an image size of 512 x 512 pixels at
arate of 25 frames/s. The images used were real aerial photographs,
representing a variety of image textures. The experimental layout is
shown in Fig. 4.

The tests involved moving the table along straight lines at certain
directions, thus simulating a straight and level flight of the airborne
camera above the ground scenery. During the operation of the table,
the image was sampled, and the digital gray level array was trans-
mitted to a real-time computer, at a rate of 1 frame/40 ms. The
motion estimation algorithms implemented in the experimental in-
vestigation were 1) the Kalman filtert/MSD shift estimator scheme
and 2) the Kalman filter/MAP estimation scheme. The Kalman fil-
ter implemented in both cases was designed to handle the correlated
measurement noise, as will be briefly described in the following.

Kalman Filter Design

To keep the investigation tractable, a simple, constant velocity
kinematic model was assumed for the camera-carrying platform.
The resulting discrete-time interframe shift dynamic equation was

Stk+ 1D =sk)+wk) (66)
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Fig.4 Experimental layouf.

where w(k) is the process noise sequence (which would normally
result from turbulence effects, unmodeled dynamics, etc.). The mea-
surement equation pertaining to the shift estimator was

Zk+1) =5tk+1)+ek+1) 67)

where e(k) is the estimation error of the image registration algo-
rithm, considered in this context as the measurement noise sequence.
Since, as previously shown, the shift estimation error is a corre-
lated sequence, it was assumed to obey the following autoregressive
model equation:

ek +1) = we(k) +r(k) 68)

where r(k) is a white, zero-mean Gaussian noise. Assuming station-
arity, the covariance of the driving white noise r is computed as

covir} = (1 — a?) - covie} (69)

where cov{e}, the estimation error covariance, was computed previ-
ously. The correlation coefficient « is related to the estimation error
correlation (also previously computed) according to

covie(k + 1), e(k)} = « - cov{e(k)} (70)

A straightforward implementation of standard Kalman filtering the-
ory was clearly not possible, because of the inherently correlated
measurement noise. Therefore, the following procedure was adopted
to design an appropriate filtering algorithm.'#

1) The system state was augmented, to include the shift estimation
error e.

2) Since the resulting augmented model had a singular measure-
ment, a reduced-order observer was designed by transforming the
augmented state. The resulting transformed measurement noise was
correlated with the transformed process noise.

3) A special filtering algorithm, whose time-update level takes
into account the correlation between the process noise and the mea-
surement noise was then implemented for the reduced-order model.

4) The parameters of the resulting filter were tuned using a
hypothesis testing technique,'® yielding a statistically consistent fil-
ter.

Results

Numerous experiments were performed to investigate the statis-
tical properties and the performance of the shift estimation algo-
rithms under various conditions. The dependence of the estimation

Light Table
2.5 T T T T
|
2.0
T
X
A 15
-
k=
=
w7 1.0
1
g
g
< 05
2 i
K]

-0.5 1 1 1
o} 20 40 60 " 80 100
No. of Interframe Intervals
a)

2.5 T T T T

20 [~ = e .
)
=
B 15 R
b=
|
w10+ J
@
5 i e S e e
E 0.5 L o - - i
:
2
g

0.0 |- p

—0.5 il 1 1 i
0 20 40 60 80 100
No. of Interframe Intervals
b)

Fig. 5 Experimental results for dull-texture scenery with measured
(dotted line) and filtered (solid line) shift: a) MSD algorithm and b)
MAP algorithm.

performance on several parameters was examined. The investigation
variables included the test window size and shape, and the image
resolution and texture (which directly affected the brightness gradi-
ents). Typical results are shown in Figs. 5 and 6, which are presented
to qualitatively demonstrate the superior performance of the MAP
algorithm. In these figures, the shift measurement (i.e., the output of
the image registration algorithm) and the filtered shift estimate (i.e.,
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Fig. 6 Experimental results for rich-texture scenery with measured
(dotted line) and filtered (solid line) shift: a) MSD algorithm and b)
MAP algorithm.

the output of the Kalman filter) are presented for two different image
textures (i.e., two different ground sceneries). In both experiments,
the motion of the light table was programmed to simulate a constant
velocity/constant altitude straight and level flight. The nominal pro-
grammed motion of the light table was contaminated by a stochastic
process noise (possessing unknown statistics), generated by the non-
ideal actuator of the light table. The results corresponding to a desert
area, having a dull texture, are shown in Fig. 5. As can be observed,
the MSD shift measurement was rather noisy, having an error stan-
dard deviation of about 0.4 pixel and experiencing several occasions
of loss of lock. Nevertheless, the relatively high measurement noise
generated by the MSD algorithm was filtered out quite effectively
by the Kalman filter, lowering the error standard deviation to about
0.1 pixel.

On the other hand, the MAP shift estimation algorithm performed
much better than the MSD algorithm. Its measurement error standard
deviation was about 0.04 pixel, and no loss of lock was observed.
The estimation error standard deviation was about 0.03 pixel. As
can be expected, the performance of the MSD algorithm improved
considerably in a rich-texture scenery, as shown in Fig. 6, yielding
measurement noise and estimation error standard deviations ofabout
0.12 and 0.07 pixels, respectively. However, the MAP algorithm was
still clearly superior to the MSD algorithm, resulting in measurement
noise and estimation error standard deviations of 0.035 and 0.025
pixels, respectively.

V1. Conclusions

A novel method has been presented for on-line, recursive im-
age registration/motion estimation, based on a sequence of terrain

images acquired by an airborne down-looking electro-optical sen-
sor. The method consists of an interlaced computational scheme,
comprising a Kalman motion estimator and a new MAP image reg-
istration algorithm. The MAP algorithm draws statistical informa-
tion from the prediction level of the Kalman filter, thus forming
a robustified image registration algorithm. The conventional MSD
algorithm was shown to be unbiased and statistically efficient, un-
der reasonable conditions. Moreover, it was shown that the ordinary
MSD algorithm can be characterized as a small error approximation
of a maximum likelihood estimator. The new MAP algorithm was
proved to be unbiased and efficient, and its estimation error covari-
ance was shown to be smaller than that of the ordinary MSD algo-
rithm. An experimental investigation using real aerial photographs
demonstrated the superior robustness of the new MAP algorithm
over that of the MSD method.

In closing we note that, although motivated by an aerospace ap-
plication, the new method should also be attractive in robotics and
computer vision applications.
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