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Minimal-Parameter Attitude Matrix Estimation
from Vector Observations

Yaakov Oshman and F. Landis Markley†

NASA Goddard Space Flight Center, Greenbelt, Maryland 20771

A computationallyef� cient, sequential method is presented for attitude matrix estimation using gyro and vector
measurements. The method is based on a recently introduced, minimal-parameter third-order method for solv-
ing the orthogonal matrix differential equation in n . In the three-dimensional case, these third-order attitude
parameters can be interpreted as temporal integrals of the body-frame angular velocity components. A nonlinear
algorithm is developed, which uses this minimal set of three parameters to estimate the nine-parameter direction-
cosine matrix. Having an extremely simple kinematic equation, these parameters render the resulting estimator
highly computationally ef� cient. An orthogonalization procedure, incorporated into the measurement process-
ing stage, enhances the accuracy and stability of the resulting algorithm, yet retains reasonable simplicity. The
performance of the new estimator is demonstrated via a numerical simulation study.

Introduction

U SING a sequence of vector measurements for attitude deter-
mination has been intensively investigated over the last three

decades. First proposed in 1965 by Wahba,1 the problem is to es-
timate the attitude of a spacecraft based on a sequence of noisy
vector observations, resolved in the body-� xed coordinate system
and in a reference system. Body-� xed vector observations are typ-
ically obtained from onboard sensors, such as star trackers, sun
sensors, or magnetometers. Corresponding reference observations
are obtained by using an ephemeris routine (for a sun observation),
from orbit data and a magnetic � eld routine (for a magnetic � eld
observation), or from a star catalog (for star observations). Uses of
attitude determination from vector observations were reported in
Refs. 2 and 3.

Inertial reference systems typically utilize vector measurements
in combinationwith strap-downgyrosto estimateboth the spacecraft
attitude and the gyro drift rate biases. Several approacheshave been
proposed for the design of such systems, differing mainly in their
choice of attitude representationmethod.

The quaternion, a popular rotation speci� er, was used in Refs. 4
and 5, in the framework of extended Kalman � ltering (EKF) algo-
rithms.The incorporationof the QUEST measurementmodelwithin
a Kalman � lter’s measurementupdatestage was presentedin Ref. 6.
In Ref. 7, vector observationswere used to estimate both the quater-
nion and the angular velocityof the spacecraft, in a gyrolessattitude
determination and control setting. The main advantageof using the
quaternion representation is that it is not singular for any rotation.
Moreover, its kinematic equation is linear and the computation of
the associated attitude matrix involves only algebraic expressions.
However, the quaternion representationis not minimal because it is
four dimensional. This leads to a normalization constraint that has
to be addressed in � ltering algorithms and increases the associated
computation load.

Euler angles were used by only a few researchers8 9 to parameter-
ize the attitude in the context of gyro-vector measurements attitude
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estimation. Although this parameterization is minimal, its use im-
posesa largecomputationalburdendue to the transcendentalexpres-
sions involved in the computation of the attitude matrix. Moreover,
Euler angles are singular, as are all three-dimensionalattitude rep-
resentations.

In a recent effort to alleviatethe computationalburden,anEKF at-
titudeestimatorwas presented10 that utilizedthe Rodriguesparame-
ters (also known as the Gibbs vector). Being a minimal set of attitude
parameters, the choice of this parameterizationrenders the resulting
estimator computationallyef� cient; however, the Rodriguesparam-
eters are singular for 180-deg rotations. The modi� ed Rodrigues
parameters (MRP), on the other hand, allow rotationsup to 360 deg
(Ref. 11). Using this observation, an MRP-based estimator has re-
cently been presented.12

The direction-cosine matrix (DCM), a natural attitude repre-
sentation, was used in a gyro-star tracker setting by several re-
searchers.Because it is inherentlynonsingular,it requiresno special
singularity-handling procedures. Moreover, its kinematic equation
is linear, as is its associated vector measurement equation, which
greatly facilitate the � lter implementation. A recursive, EKF-type
DCM identi� cation algorithm was introduced by Bar-Itzhack and
Reiner.13 Although the advantages of directly parameterizing the
attitude using the DCM are clear, the main disadvantage of this
approach is computational, as it requires the estimation of a nine-
dimensional parameter vector.

The work presented in this paper proposes to sequentially esti-
mate the attitude matrix using a minimal-dimension � lter, thus al-
leviating the computational burden normally associated with DCM
identi� cation. It is assumed, as usual, that the body-referencedan-
gular velocity is measured by an orthogonal triad of rate gyros.
The approach taken to this end is motivated by the idea of � nding
a minimal-parameter solution to the orthogonal matrix differential
equation in n , � rst introduced by Bar-Itzhack and Markley.14 In
this recent work targeted at solving a problem � rst raised in Ref. 15,
they presented a minimal-parameter solution to the orthogonalma-
trix differential equation

V t W t V t

V t n n W t W T t t t0 (1a)

V t0 V0 V0V T
0 I (1b)

where the overdot indicates the temporal derivative.Exploiting the
propertiesof V and W , Bar-Itzhackand Markley introduceda novel
minimal parameterizationof the orthogonalmatrix V . Based on ex-
tendedRodriguesparameters, this parameterizationenabledsolving
Eq. (1) using only n n 1 2 parameters, as opposed to n2 integra-
tions implied by a straightforward solution of Eq. (1).
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Motivated by Ref. 14, Ronen and Oshman16 have recently in-
troduced a third-order method for the solution of the orthogonal
matrix differential equation in n . The method is based on a third-
order, minimal parameterization of the orthogonal matrix V using
the n n 1 2 off-diagonal terms of the skew-symmetric matrix

A t t0

t

t0

W d

For the three-dimensional case, these parameters, hereafter called
integrated rate parameters (IRP), are the angles resulting from time
integrationof the body-framecomponents of the spacecraftangular
velocity.

The idea underlying the work presented herein is to utilize
the minimal, three-dimensional IRP vector to estimate the nine-
parameter attitude matrix. Building on this state vector, the result-
ing three-dimensional � lter possesses an extremely simple time-
propagation procedure, which is at the heart of its computational
ef� ciency.The DCM orthogonalityconstraintis alsoaddressed,con-
tributing to the � lter’s accuracyand numerical stability,yet keeping
its structure reasonably simple.

The followingsectionbrie� y reviewsthe IRP minimal-parameter,
third-order method for the solution of the attitude kinematic equa-
tion. The � ltering, orthogonalization, and prediction stages of the
attitude estimator are developed next. Special attention is given to
the analysis of the potential effects of the orthogonalizationstep on
the estimator’s structure. In the next section a numerical simulation
study is presented that demonstrates the accuracy and robustness
of the new algorithm. Concluding remarks are offered in the last
section.

Third-Order, Minimal Attitude Parameters
For completeness, this section brie� y reviews the minimal-

parameterproblemand the IRP method.Then, the method is adapted
to the three-dimensionalattitude kinematic equation.

Minimal-Parameter Problem
Given the matrix differentialequation(1), the minimal-parameter

problem is to � nd 1) a set of m n n 1 2 parameters that
unambiguouslyde� ne V t , 2) the differentialequation satis� ed by
these parameters, 3) the transformation that maps these parameters
into the matrix V , and 4) a simple and ef� cient method to solve the
parameters’ differential equation and to compute V t .

The third-ordermethod for the solution of Eq. (1), recently intro-
duced by Ronen and Oshman,16 is summarized in the following.

Let the skew-symmetric matrix A t t0 be de� ned as

A t t0

t

t0

W d (2)

Then, a third-order approximation of the solution V t in terms of
the entries of the matrix A t t0 is given by the matrix V t t0 ,
de� ned as

V t t0 I A t t0
A2 t t0

2

A3 t t0
3

t t0
3

[A t t0 W0 W0 A t t0 ] V0 (3)

where W0 W t0 . Moreover, V is a third-order approximationof
an orthogonal matrix, in the sense that

V t t0 V T t t0 I t t0
4 (4)

where x denotesa functionof x thathas thepropertythat x x
is bounded as x 0.

Referring now to the minimal-parameter problem, the new pa-
rameters, which de� ne the third-order solution of Eq. (1), are the
n n 1 2 off-diagonalterms of A t t0 . For the three-dimensional
case, these parameters have a simple geometric interpretation: they
are the angles resulting from a temporal integration of the three
components of the angular velocity vector

t [ 1 t 2 t 3 t ]T (5)

where i is the angular velocity component along the i axis of the
initial coordinate system, and i 1 2 3 for x , y, z, respectively.

The differential equation satis� ed by these parameters is

A t t0 W t A t0 t0 0 (6)

which can be easily solvedusingany quadraturescheme.As demon-
strated in Ref. 16, the new minimal-parametermethod is both com-
putationally ef� cient and accurate.

Attitude Matrix Kinematic Equation
In the three-dimensionalcase, the orthogonalmatrix referred to is

the attitude matrix, or the direction cosine matrix (DCM), denoted
by D t . The differential equation satis� ed by this matrix is the
well-known equation

D t t D t D t0 D0 (7)

where t [ t ], the cross product matrix corresponding
to t , is de� ned according to

[a ]

0 a3 a2

a3 0 a1

a2 a1 0

a 3 (8)

This notation re� ects the fact that

[a ]b a b a b 3 (9)

In this case, the matrix A t t0 takes the form

A t t0 [ t ] (10)

where the parameter vector t is de� ned as

t [ 1 t 2 t 3 t ]T (11)

and

i t
t

t0

i d i 1 2 3 (12)

Attitude Estimator
In this section we develop the attitude estimation algorithm. The

development of the algorithm relies on the choice of the parameter
vector , de� ned in Eqs. (11) and (12), to be the estimator’s state
vector.

Let the sampling period be denoted by T tk 1 tk . Using the
notation k tk , the state vector at time tk is

k [ 1 k 2 k 3 k ]T (13)

and Eq. (12) implies

i k
tk

t0

i d i 1 2 3 (14)

where t is the spacecraft angular velocity vector, de� ned in
Eq. (5). From Eq. (14) we have

k 1 k
tk 1

tk

d (15)

De� ning A k 1 k to be the discrete-time analog of A t t0 , i.e.,

A k 1 k [[ k 1 k ] ] (16)

Eq. (3) is rewritten as

D k 1 I A k 1 k 1
2 A2 k 1 k 1

6 A3 k 1 k

1
6
T [A k 1 k k k A k 1 k ] D k (17)
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In practice we only have access to the measured angular velocity,
denoted by t , which satis� es

t t t (18)

Here t is the rate-gyro(RG)measurementnoise.For simplicity,
this noise is assumed to be a zero-mean, white, Gaussian process,
denoted as

t [0 Q t ] (19)

where its intensity Q t (the power spectral density matrix) is de-
� ned by

E t T s Q t t s (20)

(The incorporationof more elaborate gyro noise models is straight-
forward.17)

The estimation algorithm comprises three subalgorithms. In the
� ltering stage, the state estimate and the estimation error covari-
ance matrix are updated across the newly acquired measurement.
Following the � ltering stage, the estimated attitude matrix is or-
thogonalized, to enhance the algorithm stability by annihilating the
numerical errors that have accumulatedduring the recent prediction
and � ltering stages. The prediction stage deals with the propaga-
tion in time of these variables between consecutive measurement
updates. These three procedures are developed in the ensuing.

Filtering
Let the minimum mean-squaredestimate (MMSE) of j based

on measurements up to and including tk be denoted by j k .
Assume that at tk 1 we haveon hand the predictedparameter vector

k 1 k and its correspondingpredictionerrorcovariancematrix
P k 1 k E k 1 k T k 1 k , where the estimation
error is de� ned as

j k j j k (21)

The purpose of the � ltering scheme, to be developed in the se-
quel, is to compute the a posteriori estimate and the corresponding
error covariance matrix by way of incorporating the new vector
measurements acquired at tk 1 .

As the � rst step in developingthe measurementupdatealgorithm,
we next derive the observationequation,relatingthe acquiredvector
measurements to the state.

Observation Equation
Let u and denote the reference Cartesian coordinate system

and the body-�xed Cartesian coordinate system, respectively. The
new pair of corresponding noisy vector measurements consists of
the unit vectorsu k 1 and v k 1 , which represent the measured
values of the same vector r k 1 , resolved in u and in , respec-
tively. The direction-cosinematrix D k 1 , representing the true
attitude of relative to u at time tk 1, transforms the true vector
representationu0 in u into its correspondingtrue representationv0

in according to

v0 k 1 D k 1 u0 k 1 (22)

Assuming no constraint on the measurement noise direction, the
body-frame measured unit vector v k 1 is related to the true
vector according to

v k 1
v0 k 1 n k 1

v0 k 1 n k 1
(23)

where the sensor measurement noise n is a white, Gaussian noise
sequence with

n k 1 [0 R k 1 ] (24)

Because both v0 k 1 and v k 1 are unit vectors, it follows from
Eq. (23) that

v k 1 v0 k 1
0

k 1 n k 1 n k 1 2

(25)

where the idempotent matrix

0
k 1 I v0 k 1 vT

0 k 1 (26)

is the orthogonalprojectoronto the orthogonalcomplement of span
v0 k 1 . De� ning, therefore, the effective measurement noise

associated with the measurement v k 1 as

n k 1
0

k 1 n k 1 (27)

yields the following measurement model:

v k 1 v0 k 1 n k 1 (28)

where the effectivemeasurementnoise is, to a good approximation,
a white, Gaussian sequence with

n k 1 0 R k 1 (29)

and the measurement noise covariance matrix is

R k 1
0

k 1 R k 1
0

k 1 (30)

Remark 1. This measurement model is similar to that derived in
Ref. 6 for complete vector sensors.

Remark 2. In practice, because v0 k 1 is not known, the pro-
jector matrix

0
k 1 can be approximated using the measured

value v k 1 .
Remark 3. If, in the particular sensor used, n is constrained to

be orthogonal to v0 , then Eq. (30) reduces to

R k 1 R k 1 (31)

Furthermore, if the measurement noise is isotropic, R k 1
2 I , then R k 1 2

0
k 1 .

The vectormeasurementsrelative to the referencecoordinatesys-
tem are commonly assumed to be accurately known. However, to
account for nonideal effects (e.g., star catalog errors), it is assumed
in this work that the true unit vector and the measured unit vector
are related according to

u k 1 u0 k 1 nu k 1 (32)

where nu u0 is a white, Gaussian measurement noise that is un-
correlated with n and satis� es

nu k [0 Ru k ] (33)

with Ru k being a known covariance matrix.
Because it is desired to relate the information contained in the

measurements to the state vector at the corresponding time point,
Eq. (22) is rewritten as

v0 k 1 D[ k 1 k D k ]u0 k 1 (34)

where the notation D[ k 1 k D k ] re� ects the fact that
the attitude at time tk 1 is related to the attitude at time tk via the
IRP vector difference k 1 k [see Eqs. (16) and (17)].

To exploit the information contained in the new vector measure-
ments, the nonlinear measurement equation (34) is linearized about
a nominal state, consisting of the most recent state estimate. As-
suming that immediately after the previousmeasurementupdate (at
tk ) linearization has been carried out about the a posteriori state
estimate, the resultingnominal state at the current measurementup-
date is the predicted estimate, k 1 k . Therefore, the predicted
parameters are assumed to be related to the true ones according to

k 1 k 1 k k 1 (35)

where k 1 is the perturbationof the parametervectorabout the
nominal, i.e., predicted, state. Using now the most recent estimates
for D k and k , namely, D k k and k k , respectively, in
Eq. (34), it follows from Eqs. (28), (32), and (35) that

v k 1 n k 1 D[ k 1 k k 1

k k D k k ] u k 1 nu k 1 (36)
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However, as shown in the sequel, the a posteriori state estimate is
zeroed after each measurement update (due to full reset control of
the state). Hence, we should use the reset value of the state estimate,

c k k 0 (37)

in Eq. (36). This allows us to rewrite Eq. (36) as
v k 1 n k 1 D[ k 1 k k 1 D k k ]

[u k 1 nu k 1 ] (38)

where it is understoodthat Eq. (37) is used hereinafterin the compu-
tation of the third-order approximationfor the attitude matrix. Now
expand D about the nominal parameter vector using a � rst-order
Taylor series expansion, i.e.,

D[ k 1 k k 1 D k k ] D[ k 1 k D k k ]

3

i 1 i
D[ k 1 D k k ] k 1 k i k 1 (39)

where k 1 k denotes“evaluatedat k 1 k .” UsingEq. (17),
the sensitivity matrices appearing in Eq. (39) are computed as

i
D[ k 1 D k k ] k 1 k G i [ k 1 k ]D k k

i 1 2 3 (40)

where the matrices G i
3
i 1 are

G1

0 1
2 2

1
3 1 3

1
6
T 2

1
2 3

1
3 1 2

1
6
T 3

1
2 2

1
3 1 3

1
6 T 2 1 1 1

6
2
2

2
3

1
2

2
1

1
2 3

1
3 1 2

1
6 T 3 1 1

6
2
2

2
3

1
2

2
1 1

(41a)

G2

2
1
2 1

1
3 2 3

1
6 T 1 1 1

6
2
1

2
3

1
2

2
2

1
2 1

1
3 2 3

1
6 T 1 0 1

2 3
1
3 1 2

1
6 T 3

1 1
6

2
1

2
3

1
2

2
2

1
2 3

1
3 1 2

1
6 T 3 2

(41b)

G3

3 1 1
6

2
1

2
2

1
2

2
3

1
2 1

1
3 2 3

1
6
T 1

1 1
6

2
1

2
2

1
2

2
3 3

1
2 2

1
3 1 3

1
6 T 2

1
2 1

1
3 2 3

1
6
T 1

1
2 2

1
3 1 3

1
6
T 2 0

(41c)

In Eqs. (41) the components of are evaluated at tk .
Remark 4. In a typical application, it can be assumed that the

parameters i
3
i 1 are small, such that the second-order quanti-

ties i j
3
i j 1 are negligible in Eqs. (41). Using this small-angle

approximation results in much simpler forms for G i [ k 1 k ].
The actualuseof eitherEqs. (41) or their small-angleapproximation
depends, in practice, on the dynamics of the speci� c application.

Remark 5. Notice the explicit dependence of the sensitivity ma-
triceson the angular velocity,which sets this formulationapart from
previous estimators using vector observations.4 5 9 10

Using now Eq. (39) in Eq. (38) and neglectingsecond-orderterms
yields

v k 1 D[ k 1 k D k k ]u k 1

3

i 1

G i [ k 1 k ]D k k i k 1 u k 1

D[ k 1 k D k k ]nu k 1 n k 1 (42)

Observe that the � rst member in the right-hand side (RHS) of
Eq. (42) can be recast as

3

i 1

G i [ k 1 k ]D k k i k 1 u k 1 H k 1 k 1

(43)

where the columns of the (observation) matrix

H k 1 [h1 k 1 h2 k 1 h3 k 1 ] 3 3 (44)

are

hi k 1 G i [ k 1 k ]D k k u k 1 i 1 2 3
(45)

De� ne now the effective measurement y k 1 to be

y k 1 v k 1 D[ k 1 k D k k ]u k 1 (46)

and the effective measurement noise to be

n k 1 n k 1 D[ k 1 k D k k ]nu k 1 (47)

Then, using these de� nitions in Eq. (42) yields the following mea-
surement equation:

y k 1 H k 1 k 1 n k 1 (48)

The measurement noise is a white, Gaussian sequence with

n k 1 [0 R k 1 ] (49)

where

R k 1 R k 1 D[ k 1 k D k k ]

Ru k 1 DT [ k 1 k D k k ] (50)

Having the linearized measurement equation (48) and the statis-
tical characterization of the measurement noise (49) on hand, we
can now derive the MMSE estimator for the parameter vector.

State and Covariance Update
Using Eqs. (21) and (35), we have

k 1 k 1 k 1 k k 1 k (51)

Because k 1 k is an unbiased, MMSE predictor, we have

E k 1 E k 1 k 0 (52)

and

cov k 1 cov k 1 k P k 1 k (53)

Hence,

k 1 0 P k 1 k (54)

Using the linearized measurement equation (48) and the statistical
properties of the measurement and prediction errors, Eqs. (49) and
(54), respectively, the MMSE estimator of k 1 is18

k 1 k 1 K k 1 y k 1 (55)
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where K k 1 , the estimator gain matrix, is computed as

K k 1 P k 1 k H T k 1

[H k 1 P k 1 k H T k 1 R k 1 ] 1 (56)

Also, from Eq. (51) we have

k 1 k 1 k 1 k 1 k 1 k (57)

Using Eq. (57) in Eq. (55) � nally yields the state measurement
update equation

k 1 k 1 k 1 k K k 1 y k 1 (58)

To derive the covarianceupdate equation,we subtract k 1 from
both sides of Eq. (58) and use Eqs. (48) and (51) to obtain

k 1 k 1 [I K k 1 H k 1 ] k 1 k

K k 1 n k 1 (59)

from which the familiar, Joseph-form, covariance update equation
results

P k 1 k 1 [I K k 1 H k 1 ]P k 1 k

[I K k 1 H k 1 ]T

K k 1 R k 1 K T k 1 (60)

where P k 1 k 1 E k 1 k 1 T k 1 k 1 is
the � ltering error covariance matrix.

Remark 6. In practice, numerically stable square-root algor-
ithms19 should be preferred to using the conventional covariance
update, Eq. (60).

Attitude Matrix Update
To compute the measurement-updated attitude matrix at time

tk 1, we use the most recent estimate of the parameter vector
k 1 k 1 , the estimated attitude matrix corresponding to

time tk , and the measured angular velocity matrix, de� ned as

k [ k ] (61)

in Eq. (17). This yields

D k 1 k 1 I A k 1 k 1
2

A2 k 1 k

1
6 A3 k 1 k 1

6 T [A k 1 k k

k A k 1 k ] D k k (62)

where the a posteriori estimate of A k 1 k is de� ned as

A k 1 k [ k 1 k 1 ] (63)

and D k k is the a posteriori, orthogonalized estimate of the at-
titude matrix at time tk , to be discussed in the sequel.

Remark 7. Equation (62) is based on a third-order approximation
of the attitude matrix using the updated estimates of the IRP vector.
Obviously, the accuracy of this third-order approximation relies on
the assumption that these parameters are small. In fact, it will be
shown in the sequel that this is always the case, because the updated
parameters are reset to zero after each measurement update. More-
over, the components of the parameter vector at each data point can
always be kept small by selecting a suf� ciently small discretization
interval.

Estimate Reset
As shown in Eq. (62), the a posteriori attitude matrix,

D k 1 k 1 , is computed based on the a posteriori estimate
k 1 k 1 . This estimate of the attitude matrix is then used

in consecutive prediction and � ltering steps, which in turn implies
a full reset control20 of the parameter vector

c k 1 k 1 k 1 k 1 (64)

where c k 1 is the reset state vector at tk 1, and a corresponding
reset of the state estimate

c k 1 k 1 0 (65)

which is then used in the ensuing time propagation step.
Remark 8. Notice that because the reset control is applied to both

the state vector and its estimate, no changes are necessary in the
estimation error covariance matrix.

Attitude Matrix Orthogonalization
Although the true attitudematrix is orthogonal, the � ltered DCM

will not be orthogonal,due to numerical implementationerrors and
the approximate nature of the third-order formula used to com-
pute the attitude from the estimated parameters. To improve the
algorithm’s accuracy and to enhance its stability, an additional or-
thogonalizationstage is introduced into the estimator, immediately
following the measurement update stage. In the orthogonalization
stage, the � ltered attitude matrix is orthogonalized, that is, the or-
thogonal matrix closest to the � ltered attitude matrix is found. This
orthogonal matrix is then propagated to the next measurement up-
date point.

In the sequel, the Euclidean norm (2-norm) will be used for vec-
tors, and the Frobenius norm (F-norm) will be used for matrices.

Given the a posteriori attitude matrix D k 1 k 1 , the matrix
orthogonalizationproblem is to � nd

D k 1 k 1 arg min
C

D k 1 k 1 C (66)

subject to

C T C I (67)

Being a special case of the orthogonal Procrustes problem,21 the
matrix orthogonalization problem can be easily solved using the
singular value decomposition (SVD). Thus, if

D k 1 k 1 U k 1 k 1 V T k 1 (68)

is the SVD of the matrix D k 1 k 1 where U k 1 and
V k 1 are the left and right singularvectormatrices, respectively,
and k 1 is the singular value matrix, then

D k 1 k 1 U k 1 V T k 1 (69)

The excessive computational burden associated with the SVD
might render its use prohibitive in certain applications,e.g., in real-
time attitudedeterminationand control. In such cases, an alternative
orthogonalizationscheme, introducedby Bar-Itzhack and Meyer,22

can be used. According to this scheme, the orthogonalized matrix
D k 1 k 1 can be computed iteratively using the recursion

X j 1
3
2 X j

1
2 X j X

T
j X j X0 D k 1 k 1 (70)

where X j
j

D k 1 k 1 . This schemewas shown in Ref. 22
to be globally convergent and to possess a quadratic convergence
rate.

Noting the fast convergence rate of the recursive orthogonaliza-
tion method just shown, this scheme is incorporatedinto our estima-
tion algorithmusing just a single step of the recursion(70). Thus, an
improved (nearly orthogonal), a posteriori estimate for the attitude
matrix is computed as

D k 1 k 1 N k 1 D k 1 k 1 (71)

where the linear transformation that maps the a posteriori attitude
matrix into its orthogonalversion is de� ned by

N k 1 3
2
I 1

2
D k 1 k 1 DT k 1 k 1 (72)

DCM Orthogonalization:Analysis
The introduction of the external orthogonalization step into the

estimator may conceivably affect its performance and statistical
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characteristics,thus calling for appropriateadjustments in the algo-
rithm to preserve its theoretical properties. In the remainder of this
section, the possible effects of the orthogonalizationprocedure(71)
on the a posteriori state estimate and error covariance matrix are
analyzed. In fact, as the next theorem shows, to � rst-order accuracy
the orthogonalizationprocedure does not affect the estimator.

Theorem1. Let D k 1 k 1 denotetheorthogonalizedversion
of D k 1 k 1 , computed in Eq. (71). Then

D k 1 k 1 [I [ k 1 k 1 ]]D k 1 k 1 (73)

where [ k 1 k 1 ] is a matrix-valued function that satis� es

[ k 1 k 1 ] k 1 k 1 2 (74)

Proof. To prove the theorem we need to show that

N k 1 I [ k 1 k 1 ] (75)

with [ k 1 k 1 ] satisfying Eq. (74). To this end, rewrite
Eq. (62) as

D k 1 k 1 [A k 1 k ]D k k (76)

which is an implied de� nition of the matrix-valued function .
Using Eq. (76) in Eq. (72) and noting the orthogonalityof D k k
yields

N k 1 3
2 I 1

2 [A k 1 k ] T [A k 1 k ] (77)

Using Eq. (63) we have

A2 k 1 k k 1 k 1 2 I

k 1 k 1 T k 1 k 1 (78a)

A3 k 1 k k 1 k 1 2[ k 1 k 1 ] (78b)

whence

[A k 1 k ] I [ k 1 k 1 ] 1 2 3 (79)

where the following de� nitions have been used:

1
1
2 [ k 1 k 1 2 I

k 1 k 1 T k 1 k 1 ] (80a)

2
1
6 k 1 k 1 2[ k 1 k 1 ] (80b)

3
1
6 [ k 1 k 1 k T ] (80c)

It is easy to show that

1
3
2 k 1 k 1 2 (81)

2
1

3 2
k 1 k 1 3 (82)

Consider now the vector product k 1 k 1 k T , ap-
pearing in Eq. (80c). As will be shown in the sequel [see the state
predictionequation(88)], regarding t as approximatelyconstant
over the small sampling interval [tk tk 1] yields

k T k 1 k (83)

Hence, using Eq. (57) we have

k 1 k 1 k T

k 1 k 1 k 1 k 1

k 1 k 1 k 1 k 1

k 1 k 1 2 (84)

Using Eq. (84) in Eq. (80c) yields

3
1

3 2
k 1 k 1 2 (85)

Using Eqs. (81), (82), and (85) in Eq. (79) and substituting the
result in Eq. (77) then yields Eq. (75), completing the proof.

Now, from Eq. (73) we conclude that, after the initial transient
period, the effects of the orthogonalizationprocedureon the � ltered
DCM are only of second order in k 1 k 1 . Hence, to � rst-
order accuracy, no changes in k 1 k 1 are necessary as a
result of the orthogonalization, and consequently no changes are
required in the a posteriori covariance matrix.

Prediction
In the predictionstep, the reseta posterioristate estimateat time tk

and its correspondingerror covariancematrix, c k k and P k k ,
respectively, are propagated to time tk 1 .

Noting Eqs. (15) and (64) we have, after the state reset at time tk ,

k 1 c k
tk 1

tk

d k k
tk 1

tk

d

(86)

Hence, because the estimator is unbiased, the predicted state at tk 1

is

k 1 k
tk 1

tk

d (87)

In practice, however, we only have access to the measured value of
the angular velocity. Thus, using the measured velocity in Eq. (87)
yields the following state prediction equation:

k 1 k
tk 1

tk

d (88)

Subtracting Eq. (88) from Eq. (86) and noting Eq. (18), the cor-
responding prediction error equation is

k 1 k k k
tk 1

tk

d (89)

Noting that the two terms in the RHS ofEq. (89) areuncorrelated,the
following, trivially simple covariancepropagationequation results:

P k 1 k P k k
tk 1

tk

Q d (90)

Remark 9. Any quadrature formula can be used in Eq. (88).
Simpson’s quadrature scheme yields

k 1 k 1
6
T k 4 k 1

2
k 1 (91)

where k 1
2 [tk T 2 ]. The selection of quadrature

scheme should be based mainly on the expected spacecraft dynam-
ics; thus, for a slow-dynamics case, simple trapezoidal integration
will probably suf� ce. Notice also that in many spacecraft appli-
cations, rate-integrating gyros are used, which give k 1 k
directly (rendering the prediction stage even simpler).

Remark 10. If the intensity of the RG measurement noise can be
assumed to be time invariant (as is often the case), then the error
covariance propagation is simply

P k 1 k P k k QT (92)

If, however, Q t is time varying, Simpson’s integration (or some
other quadrature formula) can be used.

Attitude Matrix Prediction
To predict the attitude matrix at tk 1 we use the most recent

estimate of the parameter vector k 1 k , the orthogonalized
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a) Roll angle d) Roll angle estimation error

b) Pitch angle e) Pitch angle estimation error

c) Yaw angle f) Yaw angle estimation error

Fig. 1 Euler angle and estimation error time histories.

estimateof the attitudematrix correspondingto tk , and the measured
angular velocity matrix, in Eq. (17). This yields

D k 1 k I A k 1 k 1
2 A2 k 1 k

1
6

A3 k 1 k 1
6
T [A k 1 k k

k A k 1 k ] D k k (93)

where the a priori estimate of A k 1 k is de� ned as

A k 1 k [ k 1 k ] (94)

Numerical Example
To demonstrate the performance of the new attitude estimation

algorithm, a numerical simulation study was conducted, in which

simulated vector measurements and RG data were processed by
the new estimator to obtain the estimated attitude matrix at each
measurement processing point.

The standard deviation of the gyro noise power spectral density
was 0.01 deg/h1 2. Both the body-frame and the reference frame
vector measurements were contaminated by zero-mean, white,
Gaussian noise sequences, orthogonal to the true directions, which
were generated via the following algorithms:

nu k 1 xu k 1
wu k 1 u0 k 1
wu k 1 u0 k 1

(95)

n k 1 x k 1
w k 1 v0 k 1

w k 1 v0 k 1
(96)
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where wu k 1 and w k 1 are randomly chosen vectors and
xu k 1 and x k 1 are normal deviates satisfying

xu k 1 0 2
u x k 1 0 2 (97)

implying

R 2 I Ru
2
u I (98)

The noise equivalentangleswere set to u 100 arc-s.Notice
that the values assumed for both the gyro white noise drift and the
star tracker noise are very conservative, compared to the current
technology state of the art.3 23

The initial attitude estimate was set to the identity matrix (thus
assuming that u and coincide at t0) whereas the true attitude
correspondedto Euler anglesof 30, 20, and 10 deg in roll, pitch, and
yaw, respectively.Again, this constitutesa conservativeassumption,
as we can always use the � rst vector measurements to � nd a rough
initial estimate of the attitude using some point-estimationscheme,
e.g., QUEST,24 or the approximate initializationmethod suggested
in Ref. 13. However, it was found that there was no need to use such
an initializationscheme,as all simulationrunsstartingat the identity
matrix successfully converged (a detailed Monte Carlo study of the
convergenceof the algorithmand the orthogonalityof the estimated
attitude matrix appears in Ref. 25).

The angular velocity of relative to u was chosen to be

t

2 sin 0 2t 4

3 sin 0 1t 2

6 sin 0 3t 3 4
deg s (99)

i.e., an angular velocity with time-varying direction. The � lter was
run at a rate of 20 Hz, i.e., the sampling interval was T 0 05 s,
whereas the measurement processing rate was a slow 1 Hz.

Figure 1 presents the three true Euler angles, the estimated angles
(computed using the estimated attitude matrix) and the correspond-
ing estimation errors, in a typical run. The Euler angle sequence
assumed was 3–2–1. The steady-stateestimationerrors of the Euler
angles computed using the estimated DCM in a typical run were
smaller than 0.015 deg (1- ). As can be clearly evidenced from
Fig. 1, the estimator’s performance was not affected by the chang-
ing direction of the angular velocity vector, thus demonstrating the
robustness of the new algorithm.

Conclusions
A computationally ef� cient, nonlinear estimation algorithm has

been presented that uses vector measurements and gyro readings to
estimate the DCM. The algorithm is based on a recently introduced,
third-order minimal parameterization of the attitude matrix. This
facilitates the use of a three-dimensional� lter to estimate the nine-
parameter attitude matrix.

The extremelysimple kinematicsobeyedby the particularparam-
eter vector chosen is inherited by the estimator’s time propagation
equations, which results in the � lter’s high numerical ef� ciency.
The DCM orthogonality constraint is dealt with by incorporating
an orthogonalizationprocedure following the measurement update
stage. Based on a single-stepimplementationof an iterative orthog-
onalization technique, the incorporation of this procedure into the
estimator was shown to not require any further modi� cations in the
structure of the algorithm.

A numerical simulation study that demonstrates the performance
of the proposed algorithm has been presented. Assuming conser-
vative gyro noise levels and vector observation errors, the attitude
estimated via the new algorithm has been shown to be accurate and
robust with respect to initializationerrors in a case with a direction-
changing angular velocity.
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