Fig. 2 Section of the time history during tracking of a continuously moving target: a) total head motion U_t; b) estimated voluntary head motion U_f; c) low-pass filter of U_t.

The nonadditive component is the dominant biodynamic interference, and that the addition of the LPF attenuates the nonadditive component in the vibration, the smaller is the contribution of the AF. The remnant noise is not additive and cannot be directly reduced by the noise cancellation method. Therefore, additional filtering schemes are needed to reduce the effects of biodynamic interference. For this reason, the subjects' performance with the LPF-only configuration was similar to their performance with the AF + LPF configuration. The experiments indicate that, at least with the time constants of 0.5 s, the subjects learned to compensate for the additional phase lag introduced by the LPF. As a rule, all of the subjects reached similar levels of performance, and eventually, after sufficient training, and with the adaptive and low-pass filtering configuration or with the low-pass-only configuration, it closely approached the tracking performance level without vibration.

Acknowledgments

This work was supported in part by the Human Factors Division, NASA Ames Research Center, and by the U.S. Air Force Aerospace Medical Research Laboratory, Wright-Patterson Air Force Base, under Grants NAWG 1128 and AFOSR88 0298, respectively.

References

Linear Quadratic Stochastic Control
Using the Singular Value Decomposition

Yaakov Oshman*
Technion—Israel Institute of Technology,
Haifa 32000, Israel

Introduction

The conventional solution to the standard, discrete-time, linear quadratic Gaussian (LQG) stochastic control problem can be expressed in terms of the solution to two separate, dual problems: the linear quadratic optimal regulator problem and the linear optimal filtering problem. The inherent numerical instability of the discrete Riccati equation, which is solved in the Kalman filter via two covariance recursions (the time
update and the measurement update), is now widely recognized. Since the dual optimal regulator problem involves the solution of a matrix Riccati equation that is identical in form to the filtering covariance recursion, the conventional methods of computing the optimal control law suffers also from numerical instability as does the Kalman filter. This instability may cause severe problems, especially in ill-conditioned cases, e.g., where the model is poorly controllable.

Since square root algorithms have been useful in the past in overcoming the Kalman filter numerical instability, this technique has also been applied to the dual control problem. Square root control algorithms that are based on UDUT factorization1 and Householder transformation2 are available. This Note presents a control law formulation that is based on the singular value decomposition (SVD). The new formulation is based on the observation that the Riccati recursion, which is the heart of the classical LQG solution, serves only as a means of computing the optimal gain matrix, and its solution is not needed in any other way. Thus, the optimal gain matrix is computed by the new algorithm without resorting to the solution of the Riccati equation. The new method complements the \(V \)-lambda square root filter,3 which is also mainly based on the SVD, to form a complete, numerically robust and accurate LQG computational scheme.

The following linear, discrete-time, stochastic system is considered:
\[
\begin{align*}
\dot{x}_k &= A_k x_k + B_k u_k + w_k \\
y_k &= C_k x_k + v_k
\end{align*}
\]
for \(k = 0, 1, \ldots, N - 1 \), where \(x_k \in \mathbb{R}^n, u_k \in \mathbb{R}^p, y_k \in \mathbb{R}^m \) and \(\{w_k\}, \{v_k\} \) are the process and measurement zero mean Gaussian white sequences, respectively, and the initial state \(x_0 \) is a Gaussian random vector with mean \(m_0 \). The LQG stochastic control problem is to find the optimal control sequence \(\{u^*_k\}_{k=0}^{N-1} \) which, based on the measurement history \(\{y_k\}_{k=0}^{N-1} \), minimizes the cost functional
\[
J = E \left(\sum_{k=0}^{N-1} (y_{k+1}^T Q_k y_{k+1} + u_k^T R_k u_k) \right)
\]
where \(E(\cdot) \) denotes the expectation operator and \(Q_k \geq 0 \) and \(R_k > 0 \) are symmetric weighting matrices. As is well known, the optimal control strategy that minimizes the cost in Eq. (2) is a feedback control law that operates on an optimal estimate of the state, as follows:
\[
u_k^* = -M_k \hat{x}_k
\]
where \(\hat{x}_k \) is the optimal state estimate (computed by the Kalman filter) and the gain matrix \(M_k \) is conventionally computed using the solution of the associated control Riccati recursion.

The new, SVD-based control law formulation is presented next.

New Control Law Formulation

Theorem: Given the dynamic system Eq. (1) and the cost functional Eq. (2), an SVD-based algorithm for the computation of the control gain in Eq. (3) is given by the following backward recursion for \(k = N, N-1, N-2, \ldots, 0 \):

Define the matrix \(\Gamma_k \in \mathbb{R}^{2n^2} \) as
\[
\Gamma_k = \begin{bmatrix} Q_k^{T/2} & \Phi_k \\ \Phi_k^T & \Phi_k \end{bmatrix}, \quad \Phi_k = 0
\]
where (\cdot)^T denotes a lower triangular square root factor (e.g., a Cholesky factor) of \((\cdot)\) and \((\cdot)^T = ((\cdot)^T)^T\). Perform a triangularization of \(\Gamma_k \), i.e., find an orthogonal transformation \(\Theta_k \) such that
\[
\Theta_k \Gamma_k = \begin{bmatrix} \Pi_k \\ 0 \end{bmatrix}
\]
where \(\Pi_k \in \mathbb{R}^{n \times n} \) is upper triangular. Define the arrays \(S_k \in \mathbb{R}^{n \times n + p} \), \(T_k \in \mathbb{R}^{n \times p} \):
\[
S_k = \begin{bmatrix} \Pi_k A_k \\ 0 \end{bmatrix}, \quad T_k = \begin{bmatrix} \Pi_k B_k \\ R_k^{T/2} \end{bmatrix}
\]
and perform an SVD of \(T_k \) to obtain
\[
T_k = U_k \begin{bmatrix} \Sigma_k \\ 0 \end{bmatrix} V_k^T
\]
Partition \(U_k^T S_k \) in accordance with the partition of \(S_k \) in Eq. (6):
\[
U_k^T S_k = \begin{bmatrix} \Psi_k \\ \Phi_k \end{bmatrix}, \quad \Psi_k \in \mathbb{R}^{n \times n}, \quad \Phi_k \in \mathbb{R}^{n \times n}
\]
Then, the optimal control gain matrix at time \(k \) is given by
\[
M_k = V_k \Sigma_k^{-1} \Psi_k
\]
Moreover, defining \(J_k^* \), the optimal cost-to-go, as
\[
J_k^* = \min_{u_1, \ldots, u_{k-1}} \sum_{j=k}^{N-1} (x_{j+1}^T Q_j x_{j+1} + u_j^T R_j u_j)
\]
where the symbol \(\| x_j \|^2 = x_j^T A x_j \) is used, it is computed by
\[
J_k^* = \| \Psi_k x_k \|^2 \quad k = 0, 1, \ldots, N - 1
\]
Proof: The required control law is also the optimal control law for the related deterministic system, where the random variables are replaced by their expected values, i.e., the following certainty equivalent system:
\[
s_{CE}: \begin{bmatrix} x_{k+1} \\ y_k \end{bmatrix} = \begin{bmatrix} A_k x_k + B_k u_k \\ C_k x_k + v_k \end{bmatrix}, \quad x_0 = m_0
\]
Hence, the following certainty equivalent cost functional will be minimized:
\[
J_{CE} = \sum_{k=0}^{N-1} (x_{k+1}^T Q_k x_{k+1} + u_k^T R_k u_k)
\]
Applying Bellman’s dynamic programming principle of optimality, the theorem will be proved by induction. Consider first the last stage of the process, assuming that the optimal control actions \(u^*_N, u^*_N, \ldots, u^*_1 \) have already been determined, so that \(u^*_{k-1} \) is the only control action yet to be found. By the optimality principle, the cost function to be minimized by \(u^*_{k-1} \) at the last stage is
\[
J_{N-1} = \| x_{N-1} \|^2 + \| u_{N-1} \|^2
\]
Using the certainty equivalent dynamic system Eq. (12) in Eq. (14) yields
\[
J_{N-1} = \| Q_{N-1}^{1/2} A_{N-1} x_{N-1} + Q_{N-1}^{1/2} B_{N-1} u_{N-1} \|^2
\]
Noting that \(\Pi_{N-1} = Q_{N-1}^{1/2} \), and using the definitions in Eq. (6), Eq. (15) becomes
\[
J_{N-1} = \| S_{N-1} x_{N-1} + T_{N-1} u_{N-1} \|^2
\]
Now perform a singular value decomposition of \(T_{N-1} \):
Clearly, the minimum of J_{N-1} with respect to u_{N-1} is reached for
\[
\mathbf{u}_{N-1}^* = -V_{N-1}^{-1} \Psi_{N-1} x_{N-1} = -M_{N-1} x_{N-1}
\]
(19)
and the minimization residual is
\[
J_{N-1}^* = \min_{u_{N-1}} \| \Phi_{N-1} x_{N-1} \|^2
\]
(20)
Next, going backward to stage k of the process (where $0 \leq k < N - 1$), it is assumed that all control actions prior to u_k have been determined, so that $\{u_k, \ldots, u_{N-1}\}$ are the only control actions yet to be exerted. By the principle of optimality, the optimal control action at stage k is determined by minimizing the following cost function (the cost-to-go) with respect to u_k, subject to the constraint in Eq. (12):
\[
J_k = \| \Phi_k x_k + J_{k+1}(x_{k+1}) \|^2
\]
(21)
Noting that, by the induction assumption,
\[
J_{k+1}^* = \| \Phi_{k+1} x_{k+1} \|^2
\]
(22)
and employing the definition in Eq. (4) of Γ_k, Eq. (21) can be rewritten as
\[
J_k = \| \Pi_k x_k \|^2 + \| R_k^{1/2} u_k \|^2
\]
(23)
Now find an orthogonal matrix Θ_k such that $\Theta_k \Gamma_k$ is upper triangular, i.e.,
\[
\Theta_k \Gamma_k = \begin{bmatrix} \Pi_k & 0 \\ \Pi_k & \Pi_k \end{bmatrix}
\]
(24)
(Θ_k need not be computed explicitly). Employing Eq. (24) and using the system Eq. (12) to express x_{k+1} as a function of x_k and u_k in Eq. (23) yields
\[
J_k = \left[\begin{bmatrix} \Pi_k A_k & \Pi_k B_k \\ 0 & R_k^{1/2} \end{bmatrix} \begin{bmatrix} x_k \\ u_k \end{bmatrix} \right]^2
\]
(25)
which, using the definition in Eq. (6) of S_k, T_k, can be expressed as
\[
J_k = \| S_k x_k + T_k u_k \|^2
\]
(26)
The last equation has the same form as that of Eq. (16). Replacing the index $N - 1$ by k and following along the lines of derivation in the first part of the proof finally yields
\[
\mathbf{u}_k^* = -V_k \Sigma_k^{-1} \Psi_k x_k = -M_k x_k
\]
(27)
The minimization residual (the optimal cost-to-go) is
\[
J_k = \min_{u_k} J_k = \| \Phi_k x_k \|^2
\]
(28)
which completes the proof.

Numerical Example

The following certainty equivalent dynamic system is considered:
\[
x_{k+1} = \begin{bmatrix} 8.25 & 0.0 & 0.1 \\ 0.1 & 1.495 & 0.5 \\ 0.0 & 0.0 & 8.75 \end{bmatrix} x_k + \begin{bmatrix} 0.0 & 1.0 \\ 1.0 & 0.0 \\ 0.0 & 1.0 \end{bmatrix} u_k
\]
(29)
\[
x_0 = [10.0, 10.0, 10.0]^T
\]
The cost functional is
\[
J = \sum_{k=0}^{10} (x_{k+1}^T \text{diag}[0.5, 0.1, 0.5] x_{k+1} + u_k^T \text{diag}[10.0, 10.0] u_k)
\]
The plant, Eq. (29), is unstable, but controllable. An Intel 80386/387 CPU/FPU-based Olivetti M380/C computer was used for the simulation. All programs were written in Micro-

Concluding Remarks

Inheriting the excellent numerical characteristics of the SVD, the new algorithm is guaranteed to be numerically stable and highly accurate. Moreover, cases of singular weighting matrices (i.e., unconstrained control action or unweighted states) can be handled without any modification. Combining the new control algorithm with the V-lambda square root filter, which also relies mainly on the SVD procedure, renders the resulting LQG scheme numerically robust and simple to implement in practice.

Acknowledgment

This work was supported by the Technion V.P.R. Fund-Sophia L. Shamban Research Fund.

References