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Maximum Likelihood State and Parameter Estimation
Via Derivatives of the F-Lambda Filter

Yaakov Oshman*
Technion—Israel Institute of Technology, Haifa, Israel

Applying the method of maximum likelihood to the problem of parameter and state estimation in linear
dynamical systems requires the implementation of a recursive algorithm that consists of a Kalman filter and its
derivatives with respect to each of the unknown parameters (the sensitivity equations). Since the conventional
Kalman filtering algorithm has been shown to be numerically unstable, a different approach is taken in this
paper, which is based on using the K-Lambda square root filtering technique. Equations are developed for the
recursive computation of the log-likelihood function gradient (score) and the Fisher information matrix (FIM)
in terms of the K-Lambda filter variables, which are the eigenfactors (eigenvalues and eigenvectors) of the
estimation error covariance matrix. Based on the singular value decomposition, the recently introduced K-
Lambda filters have been shown to be numerically stable and accurate. Therefore, their usage renders the
resulting maximum likelihood scheme numerically robust. Moreover, making the covariance eigenfactors avail-
able to the user at all estimation stages, which is an inherent and unique property of the K-Lambda class, adds
invaluable insight into the heart of the estimation process.

I. Introduction

T HE maximum likelihood (ML) method has been widely
applied to problems of state and parameter estimation in

dynamical systems.1'3 In principle, the method requires the
implementation of a Kalman filter for the estimation of the
states (based on the current best estimate of the parameters),
as well as the solution of an uncoupled set of sensitivity equa-
tions, which consist of derivatives of the Kalman filter equa-
tions with respect to the unknown parameters.4'5 The sensitiv-
ity equations, which are driven by the Kalman state estimator
as well as by the measurements, are used to compute the log-
likelihood function gradient (score) and Fisher information
matrix (FIM), which approximates the Hessian in some com-
putational schemes.6

The numerical instability of the conventional Kalman filter-
ing algorithm is now well established7 (see Ref. 8 for a defini-
tion and discussion of the numerical stability of the computa-
tional algorithm). It has been shown in numerous examples
that implementation of this algorithm (either in its continuous-
time or in its discrete-time version) on finite word-length com-
puters may lead to the appearance of negative definite covari-
ance eigenvalues, substantial loss of accuracy, and consequent
filter divergence.9'10 In Ref. 11, Bierman and Thornton demon-
strated the numerical instability of the conventional Kalman
algorithm as well as Joseph's so-called "stabilized" algorithm,
by way of an orbit determination case study that was based on
a portion of the 1977 Mariner Jupiter-Saturn deep space mis-
sion. Contrary to the common belief that the Kalman filter is
robust and numerical stability is not an issue if only the prob-
lem is well posed in an engineering sense, Bierman and Thorn-
ton's work proved that numerical failures and consequent per-
formance degradation may occur in an uncontrived, realistic
situation. As is now widely recognized, the best solution to
these problems (except for some ad hoc solutions that may or
may not work in different situations) is the use of square root
filters.11'15 These algorithms, while being algebraically equiv-
alent to the Kalman algorithm, are numerically stable and
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highly accurate. Since the estimation error covariance matrix is
replaced in these algorithms by its square root factors, which
are then propagated and updated, it implicitly retains symme-
try and positive definiteness.

As noted previously, the maximum likelihood method for
estimation of states and parameters in dynamical systems uti-
lizes the Kalman filter and its derivatives with respect to the
parameters. The numerical instability of the conventional
Kalman algorithm inevitably renders the resulting ML algo-
rithm numerically unstable. Intuitively, this sensitivity even
increases when partial derivatives are taken. It is conceivable,
therefore, that replacing the filtering algorithm by a numeri-
cally stable equivalent should greatly enhance the numerical
characteristics of the ML scheme. The utilization of a square
root filter in the context of maximum likelihood estimation
was first introduced by Bierman et al.16 They used the square
root information filter (SRIF)7'10 to derive sensitivity equa-
tions that are phrased in terms of the SRIF factors. In this
formulation, the square root factors are upper triangular ma-
trices, which are propagated and updated using orthogonal
Householder transformations. Procedures were developed for
the numerically robust computation of the log-likelihood func-
tion gradient and the Fisher information matrix in terms of
derivatives of the square root factors and state estimates.

Inspired by the work presented in Ref. 16, this paper intro-
duces a recursive ML algorithm that is based on the F-Lambda
square root filter and its derivatives. The recently introduced
F-Lambda class of filters14'15 is based on the spectral decom-
position of the error covariance matrix P, i.e., P=VAVT,
where Fis the matrix whose columns are the eigenvectors of P
and A is the diagonal eigenvalue matrix. The discrete time
versions of the F-Lambda filters are based on the singular
value decomposition (SVD) as a main computational tool,
which renders them extremely numerically robust and accu-
rate. The introduction, in this paper, of the derivatives of the
F-Lambda filter with respect to the parameters, i.e., the V-
Lambda sensitivity equations, facilitates the use of this square
root filter in the context of maximum likelihood parameter
estimation. Compared with other square root alternatives,
which use upper triangular factors of the covariance, the V-
Lambda filters are attractive because they continuously
provide their user with the eigenfactors of the estimation error
covariance matrix. These may be continuously monitored to
reveal singularities as they occur and to identify those state
subsets that are nearly dependent (see Ref. 7, p. 100; Ref. 17,
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p. 72; and Ref. 18). Relying on the singular value decomposi-
tion, these filters are more computationally expensive than
other alternatives, when using conventional, serial implemen-
tation. However, the recent advent in the area of parallel com-
putation of the SVD using multiprocessor arrays should alle-
viate the computational burden and make these filters
attractive from this perspective as well.

In Sec. II the ML parameter estimation problem is defined.
The F-Lambda filter that is used to obtain the ML estimate is
stated in Sec. III. The log-likelihood function, its gradient (the
score), and the FIM are expressed in Sec. IV in terms of the
F-Lambda variables and derivatives. Algorithms for the re-
cursive computation of these derivatives are presented in Sec.
V. These algorithms constitute the square root equivalents of
the conventional sensitivity equations. The complete proce-
dure is summarized in Sec. VI. Concluding remarks are given
in Sec. VII.

II. Maximum Likelihood State
and Parameter Estimation

Consider the following linear, discrete-time, stochastic dy-
namical system and observation:

x(k + 1) = F(A:,0)jc(A:) + G(k,Q)w(k) (1)

y(k) = H(k,Q)x(k) + v(k) (2)

where x(k) € (R77 is the state vector, y(k) € (Rm is the
measurement vector, and (w(k)] € (R*7 and [ v ( k ) } € (Rw

are the process and measurement zero mean Gaussian
white sequences, respectively, with positive definite covari-
ance matrices E [ w ( k ) w T ( j ) ] = Q(k,Q)dkj and E [ v ( k ) v T ( j ) ]
= R(k,Q)dkJ. The initial state #(0) is a Gaussian random
vector with mean /*0 and covariance E( [x(Q)~ n0][x(Q)
-/*olr) = />(0). It is further assumed that the process and ob-
servation noise sequences are not correlated with each other or
with the initial state random vector. The matrices F(A:,0),
G (k ,0), H(k ,0), Q(k ,0), and R (k ,0) are assumed to depend
on an unknown vector of parameters 6 € (Rp, and the problem
at hand is to obtain the maximum likelihood estimate of this
vector based on a sequence of measurements,
y(N):=(y(k)]^=i. For simplicity of notation, the explicit
dependence on the parameter vector 0 will be suppressed in the
sequel.

The maximum likelihood estimate &ML is defined as that
value of 0 that maximizes the joint probability density func-
tion (pdf) of the measurements. Equivalently, it is that value of
0 that maximizes the following log-likelihood function5:

= ~\ £ [yT(k\k-\)Vl-\k\k-\)y(k\(k-\)/ i , i L

logdet9l(*|A:-l)] (3)

which is derived from the joint pdf of the innovations pro-
cess (y(k\k-\)}%=i. The innovations process covariance
is 9l(£|& - 1). The innovations process and the covariance of
that process are conventionally computed via a Kalman filter
as

y(k\k - 1) = y ( k ) - H(k)x(k\k - 1) (4)

Vl(k\k - 1) = H(k)P(k\k - l)HT(k) + R ( k ) (5)

where x(k\k - 1), the a priori state estimate, and P(k\k - 1),
the a priori estimation error covariance matrix at time k, are
based on the measurement history <\)(N - 1). Since the param-
eter vector 0 enters the log-likelihood function in a nonlinear

manner, the computation of the ML estimate is carried out via
an iterative, nonlinear mathematical programming algorithm
of the form6

&i+i = &i+PiXTl(&i)gi> 1=0 ,1 , . . . (6)

where gt is the gradient of the log-likelihood function

gi = VeL[0|<y(7V)]|e = e,. (7)

and

0t';
*(•) fl(-) a(-) ]T

ae(i)'ae(2)""'ae(p)J
3C, is a gain matrix that is typically computed via some approx-
imation to the Hessian of L [0

JC,= a02 (8)

and pi is a scalar step size control parameter. In the Gauss-
Newton method, the Hessian is approximated by the FIM,
which is its expected value (up to a minus sign). This computa-
tion involves only the first derivatives of the log-likelihood
function, which are needed anyway in the evaluation of the
score. To solve problems of singularity or near-singularity of
the computed information matrix, the Levenberg-Marquardt
algorithm uses the following gain:

JC/ = Sit/ + £>/ (9)

where 9H/ is the Fisher information matrix (based on the cur-
rent estimate 0/), and ID/ is a diagonal matrix chosen to insure
positive definiteness of 3C/.

This paper presents a method for the computation of the
gradient of the log-likelihood function and the Fisher informa-
tion matrix, using the square root F-Lambda filtering algo-
rithm implementation. Avoiding the numerical instability
problem inherent in the conventional Kalman filter, the new
algorithm is numerically superior to the conventional mecha-
nization. The F-Lambda filtering algorithm is stated in the
next section.

III. F-Lambda State Filtering
In this section the F-Lambda filtering algorithm, which will

be used in the sequel, is presented. The algorithm is a hybrid
one, consisting of a time update that is performed in co-
variance mode and a measurement update that is performed
in information mode. Although the F-Lambda class con-
tains complete algorithms in both covariance and information
modes, this special arrangement of the algorithm is neces-
sary for the ensuing development of the ML parameter estima-
tor in the next sections. The algorithm is presented without
proof; for a detailed derivation, the reader is referred to Refs.
14 and 15.

As stated in Sec. I, the F-Lambda filter is based on the
spectral decomposition of the covariance (or information) ma-
trix, P = FAFr. The spectral factors are propagated in time
and updated across measurement according to the algorithms
that follow.

K-Lambda Time Update (Covariance Mode)
Given the measurement-updated factors V(k - 1 \k - 1) and

A'/2(A: - 11 A: - 1) of the a posteriori covariance P(k - 1 \k - 1)
at time k - 1 based on the measurement history ^(N - 1), the
following algorithm computes the time-propagated factors
F(A:|A:-1) and Al/2(k\k -1) of the a priori covariance
P(k\k-\):
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1) Define the augmented matrix d(k - 1) 6 (Rn>n+<* as

CL(k - 1): = [F(k - 1) F(k - 11k - I)/

where QV2(k - 1) is the matrix square root of Q(k - 1), which
can be computed via a Cholesky decomposition.19

2) Use the singular value decomposition of GL( k - 1) to write

(11)- 1) = Z(k - \)\L(k - 1) 0]ZT(k-l)

where £(& - 1) is the diagonal singular value matrix, and
E(£ - 1) and Z(k - 1) are, respectively, the left and right sin-
gular vector matrices.

3) From the SVD [Eq. (11)] read the time-updated spectral
factors of P( k \ k - 1):

(12)

(13)

(14)

4) Compute the state estimate as

3t(k\k - 1) = F(k - \)x(k - 1 1 k - 1)

V- Lambda Measurement Update (Information Mode)
Given the time-propagated eigenfactors V(k\k-\) and

Al/2(k\k - 1) of the a priori information matrix P~l( k \k - 1),
and the a priori normalized state estimate q(k\k - 1), where

q(k\k - 1): = - \)VT(k\k - \)St(k\k - (15)

the following algorithm computes the a posteriori eigenfactors
V(k\k) and A ~ l / 2 ( k \ k ) , and the updated normalized estimate
Q(k\k), defined as

q(k\k): = K-V2(k\k)VT(k\k)x(k\k)

1) Define the augmented matrix (R(k) € (R"+m>" as

A~1/2(A:|A:-l)Fr(A:|fr-l)]
R~l/2(k)H(k)

2) Perform a singular value decomposition of
tain

= Y(k) [T]

(16)

(17)

to ob-

(18)

where ^(Ar) is the diagonal singular value matrix and Y(k)
and $(A:) are, respectively, the left and right singular vector
matrices.

3) The measurement updated spectral factors are related to
the SVD factors of (B(fc) as follows:

(19)

(20)

(21)

4) Define the vector b(k) € (R"+m as

*/*. r w*-i) i*W:=U-^)^«J
5) The updated normalized estimate is found by partition-

ing YT(k)b(k) corresponding to the partition of b(k) as

(22)

where the m vector e(k) is the normalized estimation residual
(i.e., the innovation, normalized by its covariance square root)
as will be shown in the sequel.

:- 1 \k - 1) G(k - l)Ql/2(k - 1)] (10)

Returning to Eq. (14) and using the definitions Eqs. (15)
and (16) and the expressions for the propagated and updated
spectral factors yields the following time-update equation for
the normalized state estimate :

q(k\k - 1) = - l)Hr(A: - l)F(k -

(23)

which is equivalent to Eq. (14).
In the next section, the log-likelihood function and its gra-

dient are expressed in terms of the F-Lambda estimator vari-
ables and their derivatives with respect to the parameters.

IV. Log-Likelihood Function, Its Gradient, and
Fisher Information Matrix: K-Lambda Formulation

Log-Likelihood Function
In Sec. II the log-likelihood function was defined in Eq. (3),

which is repeated here for convenience:

[yT(k\k - i)y(k\k-

+ logdet9l(A:|A:-l)] (24)

The ultimate goal of this work is to express the score and the
FIM in terms of the K-Lambda filter variables, which will
enable the mechanization of the ML identification scheme via
the F-Lambda filter. To this end, first we need to express
Eq. (24) in terms of the F-Lambda filter variables. This is
done next in Theorem 1.

Theorem 1: In terms of the F-Lambda filter variables (Sec.
II), the log-likelihood function Eq. (24) can be expressed as

log detA(k\k)

which can also be written as

(25)

i N r
= -- E l

£ k=\ |_

(26)

where {X/(fc |k - l))?= i are the eigenvalues of the a priori esti-
mation error covariance.

Proof
The proof consists of two parts, in which it is shown, respec-

tively, that

and

j?^|*: - 1)01- \k\k - \)y(k\k - 1) = |k(A:)||2 (27)

(28)logdet9l(A:|A:-l) = detA(£|A:)
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To prove Eq. (27), we start by rewriting Eq. (22) as

- V 2 ( k \ k - \)VT(k\k- l)x(k\k -

A-'/2(A:|A:)Fr(A:|A:)Jt(A:|A:)
e(k)

(29)

Here, matrix YT(k) was written in partitioned form and use
was made of Eqs. (15), (16), and (21). From Eq. (29) we readily
obtain

2(k\k - \)VT(k\k - \)x(k\k -

(30)

Next, using Eqs. (17), (19), and (20) in Eq. (18) and again
writing YT(k) in partitioned form, we have

A-y>(k\k)VT(k\k)
0

(31)

from which

- v'(k\k - \)VT(k\k - 1) = - YJ2(k)R ~ y'(k)H(k)
(32)

To prove Eq. (28), note that there exists an orthogonal
transformation T such that20

\V2(k) H(k)P]/2(k\k-l)
0 P1/2(£|A:-1)

Hence

1) 0
P(k\k - \)HT(k)Vl-T/2(k\k - 1) Pl/2(k\k)

V2(k) detPl/2(k\k - 1) = deti)l1/2(A:|A: - 1) detP1/2(A:| A:)
(38)

Substituting the following relations

- 1) - detAI/2(A:|A: -

into Eq. (38) yields Eq. (28), which completes the proof. D

Log-Likelihood Gradient
Having developed the expressions Eqs. (25) and (26) for the

log-likelihood function in terms of the F-Lambda filter vari-
ables, we now turn to the computation of the score. The log-
likelihood gradient is the vector of partial derivatives of the
log-likelihood function with respect to (w.r.t.) each of the
components of the parameter vector 0, i.e.,

36(1)
J'ae(2) L[0

Using Eq. (32) in Eq. (30) yields

e(k) = Y?2(k)R ~ Yl(k)y(k\k - (33)

where the innovation y(k\ k - 1) was defined in Eq. (4). From
Eq. (33), the norm of e(k) is computed as

lk(*)ll2

= yT(k\k - l)R-T/2(k)Y22(k)Y?2(k)R ~ V2(k)y(k\k - 1)
(34)

Employing the orthogonality of the singular vector matrix
Y(k), we have

Y22(k)Y?2(k) = 1- Y2l

From Eq. (31), Y2i(k) is expressed as

= R-l/2(k)H(k)V(k\k)Al/2(k\k)

(35)

(36)

Substituting Eqs. (35) and (36) into Eq. (34) results, after some
algebra, in

-R-\k)H(k)P(k\k)HT(k)R-\k)]y(k\k-\) (37)

Finally, recalling the information mode Kalman measurement
update,

P~\k\k) = H T ( k ) R ~ { ( k ) H ( k )

using the matrix inversion lemma (Ref. 5, p. 30) and the inno-
vation covariance definition in Eq. (5), the term inside the
brackets in Eq. (37) is recognized to be ^l~\k\k - 1), from
which Eq. (27) follows. This completes the first part of the
proof.

where 6(y) is they'th component of the parameter vector 9.
For simplicity, we will refer in the sequel to the partial deriva-
tive w.r.t. only one of the components. Correspondingly, the
symbol [d( • )/56] will be used hereinafter to denote the partial
derivative w.r.t. 0(y), where \<j<p.

Computing the gradient of the model dependent part Eq.
(28) of the log-likelihood function and using the identity

yields

_ _
°8

tr

a log dety4
ae

det/?(A:)-detA(A:|A:-l)
detA(A:|A:)

aA(A:|A:-l)
)J ae~

aey

-„[*-.;]
ae J (39)

Also, since the eigenvalue matrices apearing in Eq. (39) are
diagonal, this can be equivalently rewritten as

aelog

d\i(k\k-l)

• E
/=! ae (40)

Algorithms for computing the derivatives of the eigenvalues
will be developed in the following section. Notice that only the
eigenvalues (and not the eigenvectors) are involved in this part
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of the gradient. The indirect participation of the eigenvectors
will be revealed in the sequel.

To compute the gradient of the data dependent part Eq.
(27), norms are taken from both sides of Eq. (22), which yields

\\e(k)\\*=\\b(k)\\2-\\9(k\k)\\2

Using Eq. (21) in Eq. (41) results in

\\e(k)\\2 = \\q(k\k - 1)||2 - ||$(*|*)||2 + \\R ~ l/2(k)y(k)\\2

from which, upon taking derivatives w.r.t. 9, we obtain

(41)

(42)

Procedures for computing the derivatives of the normalized
state estimates q(k\k) and q(k\k - 1) will be derived in the next
section. For the computation of [dR ~ l/2(k)/dQ] we proceed,
following Ref. 16, by differentiating R-y>(k)R(k)R~T/2(k)
= 1 w.r.t. 9, which yields

R ~ l/2(k)RQ(k)R ~ T/2(k) = - 2(k)R l

(43)

where, to simplify notation, (-)e denotes partial derivative
w.r.t. 9, [d( -)/d9]. Since R 1/2(Ar) is upper triangular, the prod-
uct -RQ (k)R l/2(k) is upper triangular as well. Denoting by
U(k) the upper triangular part of the matrix on the left side of
Eq. (43) and by D(k) its diagonal, we have

- R Q l / 2 ( k ) R l / 2 ( k ) = U(k) + ViD(k) (44)

Equation (44) is a triangular linear system that is easily solved
for#e-1/2(A:).

Summarizing the results so far, the components of the score
are given by

1 f ' a
2/T, \,(k\k) 30

dQ dQ

y(k)

(45)

where all variables involved are either directly available from
the F-Lambda filter or are computed based on it via proce-
dures that will be specified in the sequel.

Fisher Information Matrix
To compute the FIM, recall the definition

: = E f (46)

Since the score VeL [9 1 <y (N)] has zero mean, the FIM is the
covariance of the score. The gradient of the log-likelihood
function Eq. (3) can be written as the sum

VQL[Q\<\)(N)]=
N

(47)

where s(k\k - 1) is the conditional score, i.e., the gradient of
the conditional log-likelihood function given the past measure-
ment history ^(k -1):

S(k\k - 1) = - '/z VQ[yT(k\k - \)Vl-l(k\k - l)y(k\k - 1)

+ logdet9l(*|A:-l)]

Using previous development, the components of the condi-
tional score are given by

-l)y(k\k-\)

dq(k\k-\)+ log det9l(A:|A: - 1)] = qT(k\k - 1)
dQ

+ ,£ 89

d\j(k\k)
(48)

Note that the FIM is the covariance of the sum Eq. (47) whose
terms are uncorrelated. Following Ref. 21, we propose to esti-
mate the FIM from the sample as follows:

= £ s(k\k-l)sT(k\k-l)
k=\

- j- VQL [91 <y (N)] vlL [9 <y (N)} (49)

where s(k\k-l) is computed via Eq. (48) and the score
VeL [91 <y (N)] is computed in Eq. (45). This estimate of the
FIM is asymptotically unbiased and consistent.21

Having obtained the expressions for the score and FIM in
terms of the derivatives of the V-Lambda filter variables, these
derivatives are developed next.

V. F-Lambda Sensitivity Equations
In this section we derive algorithms for the recursive com-

putation of the derivatives of the K-Lambda filter variables,
which are needed for the score computation, as shown in
Sec. IV [Eq. (45)]. These include the derivatives of the eigen-
factors and those of the state estimates.

Sensitivity Equation for the Time-Updated Eigenvalue Matrix
To obtain the sensitivity derivatives of the a priori eigen-

values, we use the covariance mode time-updated equation

a(*-l)= V(k\k-l)[Ay>(k\k-l) 0]ZT(k-l) (50)

which represents the singular value decomposition of <2(A: - 1).
Assuming that all of the variables in Eq. (50) can be computed
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via the K-Lambda state estimator (based on the current esti-
mate of e), and also that QQ(k - 1): = [dQ(k - l)/dQ] is avail-
able from previous computations, the problem is to compute
the derivative of the eigenvalue matrix A(k\k-\) w.r.t. e,
[aA(A:|k - l)/ae]. Since the right side of Eq. (50) is the singu-
lar value decomposition of Q(k - 1), it follows that the ele-
ments of the diagonal matrix A(k\ k - 1) are the eigenvalues of
the matrix &(k - \)&T(k - 1). The problem translates, there-
fore, to the computation of the derivatives of the eigenvalues
of a symmetric matrix that depends on a parameter. To this
end, the result summarized in the following theorem is needed.
Theorem 2: Let P(s) be a symmetric n x n real matrix func-
tion that depends on the real parameter 5, and let P(s) possess
continuous first derivatives for every s € (R. Let [A,(5))"=! be
the eigenvalues of P(s) (which need not be distinct), and let
V(s) be the orthogonal matrix whose columns are the cor-
responding eigenvectors {v/(s))?=1 of P(s). Then [X,(s))?=1
and V(s) possess continuous first derivatives for every 5 € (R;
furthermore the following is true:

1)

2)

as \j-\j
. _

Proof: For the existence of analytic eigenvalue/eigenvector
functions for every s € (R in the more general case of an ana-
lytic, self-adjoint matrix P(s), see Ref. 22. The derivatives of
the eigenfactors are developed in Ref. 23. D

Using Theorem 2, we can express the sensitivity derivatives
of the eigenvalues as functions of the available factors as fol-
lows:

(53)

where

d[a(k - \)&T(k - 1)]
ae

(54)

Using Eq. (54) in Eq. (53) yields

d\f(k\k-l)
ae = 2v?(k\k - 1)G(* - l)Q£(k - l)vt(k\k-

(55)

Employing Eq. (50), Gi(k - 1) can be expressed as

<3L(k -1) = £*?Wk - \)Vj(k\k- \)Zj(k - 1) (56)

where Zj(k - 1) is they'th column of the matrix Z(k - 1) [no-
tice that only the first n columns of the (n+q)x(n+q)
matrix Z(k-l) are involved]. Using the last expression for
a(k - 1), Eq. (55) becomes

= 2v?(k\k-\)ae

xQ,Rk-l)Vi(k\k-l)

= 2X)/2 (k\k - \)Z?(k - - \)vi(k\k- (57)

where use was made of the eigenvectors orthonormality prop-
erty. To simplify the notation in the sequel, define yu(k\k - 1)
as

yn(k\k - 1): = zT(k - !)(%(* - \)vi(k\k - 1) (58)

and let F( k \ k - 1) be the diagonal matrix

T(k\k-l):

:-l), ...,ym(k\k-l)] (59)

Using these definitions, Eq. (57) becomes

aA(A:|A:-l)
ae = 2A1/2(£|A:-l)r(A:|A:-l) (60)

which is the sought for sensitivity equation for the time-up-
dated eigenvalue matrix A(k \ k-l). Using this result in the
expression for the log-likelihood gradient, the corresponding
term in Eq. (45) is rewritten as

A-l(k\k-l) dA(k\k-l)]
ae

= tr A~'A(k\k-\)Y(k\k-\) (61)

Note that all matrices involved here are diagonal, which ren-
ders the trace computation trivial. Note also that throughout
the derivation CLQ(k -1) has been assumed known from pre-
vious calculations. We will return to the details of the explicit
computation of this matrix derivative at a later point.

Sensitivity Equation for the Measurement-Updated Eigenvalue Matrix
Recall, from Sec. Ill, that the F-Lambda information mode

measurement update can be written as

= Y(k)
[A-*(k\k)] VT(k\k) (62)

which is the singular value decomposition of <£(&). Obviously,
A~l(k\k) is the eigenvalue matrix of (Br(A:)(B(A:), and the
problem is, therefore, to compute the sensitivities of the eigen-
values of a symmetric matrix. Again, we use Theorem 2 to
obtain

= v?(k\k)[toT(k)to(k)]*Vt(k\k) (63)ae
where

[(3,T(k)(S>e(k)]T (64)

Using Eq. (64) in Eq. (63) yields

ae (65)

Employing Eq. (62), <Br(Ar) can be expressed as

0] YT(k)

(66)

where Yj(k) is the y'th column of the matrix Y(k) [again,
notice that only the first n columns of the (n +m)x(n +m)
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matrix are involved]. Using the last expression for (Br(Ar),
Eq. (65) becomes

a0 LJ^I
x &Q(k)Vi(k\k) = 2\^/2(k\k)YT(k)®Q(k)vi(k\k) (67)

where use was made of the eigenvectors orthonormality.
Analogously to definitions Eqs. (58) and (59), we define

yu(k\k): = Y^(k)^Q(k)Vi(k\k) (68)

T(k\k): = tiag[yn(k\k)9y22(k\k), ..., ynn(k\k)] (69)

Using these definitions, Eq. (67) can be written as

3A~l(k\k)
ae

from which we obtain

dA(k\k)

= 2A~l/2(k\k)T(k\k)

= -2A3/2(A:|A:)r(A:|A:)

(70)

(71)

Equation (71) is the sensitivity equation for the measurement-
updated eigenvalue matrix A(k\k). Using this result in the
expression Eq. (45) for the log-likelihood gradient, the last
term of that expression may be written as

(72)

1) Derivatives of mathematical model matrices [3F(k)/dQ],
[dG(k - 1)730], and [dH(k)/dQ]; these are specified as part
of the parameter estimation problem.

2) Derivatives of the square roots of the noises covariance
matrices [dR ~ 1/2(Ar)/d9] and [dQl/2(k - 1)750]; these are com-
puted from the specified [dR(k)/dQ] and [dQ(k - 1)730] via
the procedure outlined in Sec. IV.

3) Eigenvalue matrices derivatives [8A(k\k)/dQ] and
[dA(k\k - l)/d0]; procedures for the computation of these
derivatives were derived previously in this section.

4) Eigenvector matrices derivatives [8V(k\k)/dQ] and
[dV(k\k - l)/d0]. These derivatives are needed for the com-
putation of [da(k - l)/a0] and [d(B(£)/d9], though they do
not appear explicitly in the log-likelihood gradient, Eq. (45).

Sensitivity equations for the eigenvector derivatives are
derived next.

Sensitivity Equation for the Time-Updated Eigenvector Matrix
To compute [dV(k\k - 1)730], we observe from the singu-

lar value decomposition Eq. (50) that V(k\k - 1) is the eigen-
vector matrix of Gi(k - l)&T(k - 1). Therefore the problem is
to obtain the sensitivities of the eigenvectors of the symmetric
matrix Q(k - l)CLT(k - 1) that depend on the parameter 0. The
solution to this problem is given in terms of Theorem 2,
as follows.

Let Vi(k\k-\) be an eigenvector corresponding to
A,(A:|A: - 1) [the /th column of V(k\k - 1)], then

- D]ev/(*l* -
Having derived the sensitivity equations for the eigenvalue

matrices, we notice that it has been assumed in both the time-
updated and the measurement-update sensitivity equations,
respectively, that G.Q(k - 1) and (Be(Ar) are known from pre-
vious stages. Recalling Eqs. (10) and (17), we express these

7=1

xvj(k\k-l) (75)

To simplify notation, define the functions «//(/:|A: - 1) as

- l)]QVi(k\k -
A/-A,

0

derivatives as follows:

dd(k-l) \d[F(k-\)V(k-\\k-\)^(k-\\k-l)}
50 50

ae

d(&(k)
dQ

d[A-"(k\k-l)VT(k\k-l)

d[R-v'(k)H(k)]
90

(73)

(74)

\i*\j

A/ = Ay

Using Eqs. (54) and (56) in Eq. (76), we obtain

vf(k\k- l)[Q(k - l)Q,T(k - 1)]ev f(k\k - 1)

= A f 2 ( k \ k - \)Zj(k - \)0%(k - \)Vj(k\k- ]

: - \)Zj(k - \)QLl(k - l)v/(A:|A: - 1

(76)

(77)

Defining, analogously to Eq. (58) the functions yy(k\k - 1) as

l) (78)

Examining both of these equations, we observe that to com-
pute the derivatives [dGL(k - 1)736] and [d(B(Ar)/d9] we have
to use sensitivities that belong to the following four categories:

and using this definition and Eq. (77) in Eq. (76), Uji(k\k - 1)
becomes

X/-X;
X,

X, = Xy

(79)
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Now let Q(k\k-l) be the matrix whose (i J) element is
Uij(k\k- 1). Then, using this notation, Eq. (75) can be re-
written as

(80)ae

and the sought for derivative of the eigenvector matrix finally
becomes

bV(k\k-\)
ae = V(k\k-\)to(k\k-\) (81)

Sensitivity Equation for the Measurement-Updated Eigenvector
Matrix

Following along the lines of the preceding derivation, we
observe from Eq. (62) that the columns of V(k\k) are the
eigenvectors of the symmetric matrix (Br(&)(B(A:). Hence, to
compute the sensitivity [8V(k\k)/dQ] we employ Theorem 2
to write

30

Define Uji(k\k) to be

X,- — Xy

(83)

Using Eqs. (64) and (66) in Eq. (83), we obtain

Vj
T(k\k)[®T(k)(S,(k)]eVi(k\k)

<84>

Define the functions yy(k\k) as

yu(k\k): = YT(k)®B(k)vt(k\k) (85)

Then, using Eqs. (84) and (85) in Eq. (83), Wji(k\k) becomes

\rVk(k\kyYu(k\k) + \^(k\kyYji(k\k)
\,-\j X, * X,

X, = X,

(86)

Letting Q(k \k ) be the matrix whose entries are the functions
Ujj(k\k) Eq. (82) can be rewritten as

- (87)

or, in matrix form,

dV(k\k)
a0 (88)

which is the required sensitivity equation for the measurement-
updated eigenvector matrix.

Having obtained the sensitivity equations for the eigenfac-
tors, we finally derive the corresponding equations for the
state estimates.

Sensitivity Equation for the A Priori Normalized State Estimate
Rewriting Eq. (23) as

q(k\k - 1) = A- l/2(k\k - \)VT(k\k - l)F(k - 1)

xV(k-\\k- 1)A1/2(A: - 1 \k - l)q(k - 1 \k - (89)

differentiating w.r.t. 0 and using the sensitivity equations
[Eqs. (60), (71), (81), and (88)] for the a priori and a posteriori
eigenfactors yields

xF(k - l)V(k -\\k- 1)A1/2(A: - 1 \k - 1)

-A- l/2(k\k - l)Q(k\k - \)VT(k\k - l)F(k - 1)

x V(k - 1 1 A: - 1)A1/2(A: - 1 \k - 1)

+ A- l/2(k\k - l)VT(k\k - l)FQ(k - \)V(k - 1 \k - 1)

x A1/2(A: - 1 \k - 1) + A- l/2(k\k - l)VT(k\k - 1)

xF(k - l)V(k - 1 k - 1)Q(A: - 1 \k - 1)A1/2(A: - 1 \k - 1)

-A- l/2(k\k - \)VT(k\k - \)F(k - \)V(k - 1 \k - 1)

x A(k - 1 \k - l)T(k -l\k- 1)1 q(k - 1 \k - 1)

+ A- l/2(k\k - \)VT(k\k - \)F(k - \)V(k - 1 \k - 1)

x A1/2(A: - 1 \k - \)qQ(k - 1 \k - 1) (90)

where use was made of the fact that ti(k\k-\) is a skew-
symmetric matrix [see Eq. (79)]; FQ(k - 1) is given in the prob-
lem definition, and qe(k - 1 \k - 1) is computed via the a pos-
teriori sensitivity equation that is derived next.

Sensitivity Equation for the A Posteriori Normalized State Estimate
To obtain the equation for [a#(A:|A:)/ae], we rewrite Eq.

(62) as

(&T(k)Y(k)= [V(k\k)A-l/*(k\k) 0]

Multiplying Eq. (91) by Eq. (22) yields

= V(k\k)A-y>(k\k)q(k\k)

(91)

(92)

where use was made of the orthogonality of Y(k). Taking
derivative w.r.t. 0 and using the expressions (71) and (88) for
the eigenfactors sensitivities, we obtain, after some manipu-
lation,

dQ(k\k)
a0

A1/2(A:|A:)K7'(A:|A:)(Br(A:)MA:)

(93)
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where

bQ(k) =

dq(k\k-l)
ae

dR-l/2(k)
y(k)

(94)

Now rewrite Eq. (91) as

Ay*(k\k)VT(k\k)(&T(k) = [l 0] YT(k) = YT(k) (95)

where Y(k) € (Rn + m>" is the matrix containing the first n
columns of Y(k). Using the last result in Eq. (93), we obtain
the final form of the sensitivity equation:

dq(k\k)
89 = Ay*(k\k)VT(k\k)®Q(k)b(k) + YT(k)be(k)

(96)

Having obtained the sensitivity equation for the normalized
state estimate, the new, square root, maximum likelihood
algorithm is completed. For the reader's convenience, it is
summarized in the next section.

VI. Implementation Summary of the
Maximum Likelihood Algorithm

Log-Likelihood Gradient Computation
The log-likelihood gradient is given in Eq. (45). The follow-

ing procedure summarizes the algorithm for computing the
F-Lambda variables and sensitivity derivatives appearing in
that expression.

V-Lambda Variables: A(k\k- 1), q(k\k- 1), and q(k\k)
These quantities are computed recursively via the V-

Lambda state estimator outlined in Sec. III.

Eigenvalue Sensitivity Derivatives: [dA(k\k - l)/d0] and
[dA(k\k)/d&]

At each time step k:
1) Using the values of [dV(k - 1 \k - 1)759], [dA(A:-l|A:

-l)/a0], and [dQ1/2(k-\)/dQ] that were computed at the
previous time step (k - 1), compute de(k - 1) via Eq. (73).

2) Using GLQ(k - 1), compute [dA(k\k - 1)730] via Eq. (60).
3) Using aQ(k - 1), compute [dV(k\k - 1)730] viaEq. (81).
4) Compute [dR ~ l/z(k)/dB] by solving the triangular sys-

tem, Eq. (44).
5) Using [dF(A:|A:-l)/d0], [dA(k\k - 1)739] and

[dR-l/2(k)/dQ], compute (Be(A:) via Eq. (74).
6) Using (Be(A:), compute [dA(A:|A:)/d0] via Eq. (71).
7) Using (Be(Ar), compute [dV(k\k)/dQ] via Eq. (88). Also,

solving a triangular system analogous to Eq. (44), compute
[dQl/2(k)/d&]. These two sensitivity derivatives are needed
for the computation of &e(k) at the following time step (see
stage 1).

Normalized State Sensitivity Derivatives: [dq(k\k - l)/d0] and
[dq(k\k)/dQ]

1) Using qe(k - 1 \k - 1) (which is available from the pre-
vious time step), [dq(k\k - l)/d0] is computed via Eq. (90).

2) The bQ(k) is computed via Eq. (94) using [dR ~ 1/2(A:)/d0]
and [dq(k\k-l)/dQ].

3) Using bQ(k) and (Be(A:), [dq(k\k)/dQ] is computed via
Eq. (96).

Fisher Information Matrix Computation
The FIM is estimated from the sample via Eq. (49), where

the conditional scores are computed in Eq. (48) and the score
is given in Eq. (45). Note that all of the variables needed for the
FIM have already been computed for the score.

VII. Conclusions
The maximum likelihood (ML) parameter estimation

method is implemented in this paper using a hybrid (covari-
ance/information) K-Lambda square root state estimator.
Derivatives of this filter with respect to the parameter vector
are developed that comprise a complete set of square root
sensitivity equations. Based on the F-Lambda filter variables
and their derivatives, formulas are derived for the computa-
tion of the log-likelihood function, its gradient, and the Fisher
information matrix.

Compared to the SRIF-based ML scheme proposed by Bier-
man et al. ,16 the new algorithm is more computationally expen-
sive, relying mainly on the SVD procedure. However, in view
of the excellent numerical characteristics of the SVD-based
F-Lambda filter, the new scheme should be numerically supe-
rior in stability and accuracy. Moreover, the direct utilization
of the covariance spectral factors adds physical insight into
the estimation process as an additional merit of the proposed
method.
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