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Gain-Free Square Root Information Filtering Using
the Spectral Decomposition

Yaakov Oshman*
State University of New York at Buffalo, Buffalo, New York

A new square root state estimation algorithm is introduced, that operates in the information mode in both the
time and the measurement update stages. The algorithm, called the V-Lambda filter, is based on the spectral
decomposition of the covariance matrix into a V\VT form, where V is the matrix whose columns are the
eigenvectors of the covariance matrix, and A is the diagonal matrix of its eigenvalues. The algorithm updates a
normalized state estimate along with the information matrix square root factors, thus doing away with the gain
computation. Both stages of the filter constitute equation-free algorithms and thus ideally suit parallel processing
implementations. Singular value decomposition is used as a sole computational tool in both the eigenvectors/eigen-
values and the normalized state estimate updates, rendering a complete estimation scheme with exceptional
numerical stability and precision. The distinct square root nature of the new algorithm is demonstrated numerically
via a typical example, which compares the performance of the V-Lambda filter to that of the corresponding
conventional Kalman algorithm. Belonging to the class of square root estimation algorithms, the new filter has all
the virtues of a true square root routine. However, the new formulation also provides its user with invaluable insight
into the heart of the estimation process, which is a unique characteristic of the V-Lambda filters.

I. Introduction

IT is now widely recognized that the filtering algorithms
developed by Kalman1 and Kalman and Bucy2 may suffer

from numerical instability when implemented in practice.
Soon after the introduction of these algorithms, it was shown
that, especially when implemented on relatively short-word-
length computers, they may lead to the computation of
negative definite covariance matrices.3'4 Except for being a
theoretical impossibility, they also may cause filter divergence.
It is important to note here that this numerical phenomenon
may occur in an unanticipated fashion, and that the filter may
have started diverging even before the negative covariance
eigenvalues have been observed.5

Many ad hoc solutions have been offered in the literature to
this problem.6 However, recognizing the fact that the problem
is caused by the use of a numerically unstable algorithm, it is
now commonly agreed in the estimation community that the
best solution is to use the so-called square root estimation
algorithms, which are inherently numerically stable. In fact,
today these algorithms are considered to be the only reliable
means of applying linear estimation theory to practical esti-
mation problems. By the nature of the square root approach
to linear estimation, this class of algorithms contains many
different methods. The common feature to all of these al-
gorithms is that they all use some decomposition (termed: the
square root decomposition) of the estimation error covariance
matrix into its square root factors, thereby replacing the
covariance matrix by its factors in each of the computation
stages so that the covariance itself is never explicitly com-
puted. When needed, the covariance can be easily recon-
structed via its square root factors. Obtained this way, the
covariance is assured to be symmetric positive semidefinite.
Moreover, it has been shown that in some ill-conditioned
cases these algorithms can deliver up to twice the accuracy of
the conventional Kalman algorithm (their accuracy when
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implemented on a certain word length computer is compara-
ble to the accuracy of the regular algorithm implemented with
double that word length).5 Among these methods are those
based on the QR factorization7 and Bierman's U-D method8'9
that uses a UDUT decomposition, where U is a unit upper
triangular matrix and D is diagonal.

Recently, two new square root filtering algorithms were
introduced.10 These algorithms, called V-Lambda filters, use
the spectral decomposition of the error covariance matrix into
a P = VAVT form, where V is the matrix of the eigenvectors
of P, and A is the diagonal matrix of its eigenvalues. The
measurement update scheme, common to both algorithms,
operates in the information mode and furnishes the a posteri-
ori V and A"1/2 factors via a singular value decomposition.
Two time update algorithms were proposed (a continuous one
and a discrete one), which both operate in covariance mode,
rendering the resulting filters hybrid. As opposed to other
square root routines, in which the choice of the type of square
root decomposition to be used is based solely on computa-
tional efficiency considerations, the V-Lambda algorithms
provide their user with an invaluable insight into the estima-
tion process. Being based on the spectral decomposition of the
covariance they enable the user to monitor closely the eigen-
factors (eigenvalues/eigenvectors), which are continuously
available, so that singularities may be revealed as they de-
velop. Moreover, using these algorithms makes it very easy to
identify those state subsets that become nearly dependent (a
problem that cannot be easily resolved using other square
root methods) (Ref. 5, p. 100; Ref. 7, p. 72). The reader also
is referred to Ref. 11 for an enlightening explanation of the
role of the covariance eigenfactors in the analysis of the
observability of certain linear combinations of state variables.

In comparison with other information square root al-
gorithms that update a normalized estimate of the state and
thus avoid the necessity of gain computation,5 the V-Lambda
algorithms presented in Ref. 10 update the state estimate
directly; this, of course, makes it necessary to compute the
gain matrix, and, while two alternative gain computation
algorithms were outlined, it would still be desirable (from the
computational point of view) to develop a V-Lambda infor-
mation algorithm which is "gain-free," in a similar fashion to
other square root information routines.

In the present paper, we introduce a new formulation of the
discrete time V-Lambda measurement update algorithm. The
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682 Y. OSHMAN J. GUIDANCE

new formulation uses the singular value decomposition tech-
nique to provide the updated normalized estimate of the state
along with the updated square root factors of the information
matrix. This formulation does away with the gain computa-
tion and, at the same time, renders the state estimate update
algorithm numerically robust (being computed via the singu-
lar value decomposition). A new time update V-Lambda
algorithm is introduced too, which operates in the informa-
tion mode as well. The new time update algorithm is also
based on the singular value decomposition technique and is
combined with the measurement update algorithm to form a
complete V-Lambda information filter.

Both of the new algorithms are derived using a dynamic
programming approach, as opposed to the direct approach
based on the Kalman filter equations, used in Ref. 10. Being
based solely on the numerically robust singular value decom-
position, the new V-Lambda filter offers its user excellent
numerical reliability and accuracy qualities, together with the
provision of the covariance eigenfactors, which, as observed
before, adds physical insight to square root filtering. The
recent vast development in the area of parallel computation of
the singular value decomposition using multiprocessor ar-
rays12"14 also makes the new filtering algorithm computation-
ally attractive.

In the next section we describe the method of dynamic
programming as applied to optimal linear filtering. The results
presented in this section are used in Sees. Ill and IV, where
both stages of the V-Lambda filter, namely, the measurement
update stage and the time propagation stage, are derived.
These algorithms are tailored in Sec. V to form a complete
square root state estimator. In Sec. VI we present a numerical
example, which serves to demonstrate the superior numerical
characteristics of the V-Lambda algorithm via a comparison
with the conventional Kalman filtering algorithm. Concluding
remarks are offered in the final section.

II. Dynamic Programming Approach to
Linear Estimation

In this section we present a dynamic programming ap-
proach to the problem of linear optimal estimation. This
approach, and the development that follows in this section,
are based on the dynamic programming solution given in Ref.
15 to the general (nonlinear) filtering problem. The purpose of
this section is twofold: 1) to acquaint the reader briefly with
the method, and 2) to prepare the theoretical basis for devel-
oping the square root filtering algorithm in later sections.

In the ensuing, we will use the following notation to
describe the discrete-time stochastic process whose state is to
be estimated:

where xkeRn is the state vector, {wk}eRp a Gaussian white
sequence with zero mean and positive definite covariance Qk,
and Fk£R">n the dynamics (transition) matrix.

It is assumed that the initial state vector JCQ is random and
has a Gaussian distribution with mean ^ and positive definite
covariance P0.

The measurement equation is

yk = Hkxk + vk (2)

where ykeRm is the measurement vector, {vk}eRm the Gaus-
sian white measurement noise sequence with zero mean and
positive definite covariance Rk, and HkeRm-n the measure-
ment matrix.

It is further assumed that the measurement noise, the
process noise, and the initial condition random vector are not
correlated.

Before proceeding with the development, it should be noted
that the Gaussian distribution assumption is made in order to

facilitate the use of the dynamic programming approach.
Indeed, as will be proved in the sequel, the filtering algorithm
that will be derived is the optimal linear filter for non-Gaus-
sian systems as well.

Our goal here is to find the optimal estimate X of the
sequence Xn = {jc0, jc l,..., xn }, given the measurements
Y" =? {jWivJ^}- This estimate is defined as that X which
brings to minimum the following cost function:

E {\\X»-Xfw}
X\Y (3)

where E denotes the expectation operator (conditioned here
on the measurements), || • || is the Euclidean vector norm, and
W is an arbitrary positive definite weighting matrix. As is well
known,16 the optimal estimator (in the sense that was defined
earlier), is the conditional expectation

X = E{Xn\Yn]

In the Gaussian case,6 this conditional expectation coincides
with the mode of the conditional probability density function
(pdO/riyC*!.)7)- Since we are dealing with a linear dynamical
system whose inputs (and initial condition) are Gaussian
distributed, we will use the following procedure to find the
optimal estimator:

1) We will write an explicit expression for the pdf in our
case.

2) Using the dynamic programming approach, we will find
the mode of this pdf (at which the function attains maxi-
mum), which will be the optimal estimator sought for.

Proceeding with the first stage, we use Bayes rule to write

Using the measurement equation (2), the Markovian nature
of the process (1), and the fact that the measurement noise is
a white sequence, we can express the conditional pdf as
follows:

II 0 fk(Xk\Xk- l)
k=\

(4)

where fVk is the (Gaussian) pdf of vk, f0(xQ) the (Gaussian) pdf
of JCG, fk(xk\xk_l) the conditional pdf of xk conditioned on
xk_l9 and/yO>0,...,.yw) the joint pdf of the measurements Yn.

From the system equation (1) it follows thatfk(xk\xk_l) is
Gaussian, with mean Fk_lxk_l and covariance Gk_1Qk_i
Qk-i- Without loss of generality, we can assume this covari-
ance to be nonsingular (since the system's state equations can
always be rearranged so that this condition is satisfied).
Therefore, we can rewrite Eq. (4) in the following explicit
form:

Qk,

x exp — - \\yk-Hkxk\\l l--\\x0-
*

\\Xk+l ~ [GQGT\-i (5)

where C(Fk,Gk,Qk,Rk) is a constant that is determined by the
system's parameters.

Having written the conditional pdf in an explicit form, we
now turn to the second stage of the development, namely, that
of finding the mode of that function. Since, as can be seen
from Eq. (5), the pdf is an exponential function, it follows
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SEPT.-OCT. 1989 GAIN-FREE SQUARE ROOT INFORMATION 683

that an equivalent problem to that of finding its mode is the
following one.

Minimize the cost function:

|| ** + 1 "" \\IGQG T\
k

(6)

with respect to the sequence {JCO,...,JCM}.
Note here that, in light of the system equation (1), the last

term in Eq. (6) also can be expressed as
j n-\

9 I II

Therefore, the problem of minimizing /„ in Eq. (6) is equiva-
lent to that of minimizing the following function:

l«f
" o i- (7a)

with respect to (w.r.t.) the sequences {x0,...,xn} and
{w0,. ..,wn_]], subject to the equality constraints:

1 = Fkxk + Gkwk k = (7b)

This is a (n + 1) -steps constrained minimization problem
whose solution yields the required sequence of state estimates
{*(>,...,£„}, as well as the sequence of smoothed estimates of
the process noise: {H>O,... ,#„_!}. The rest of this section is
devoted to the solution of this minimization problem, using
the dynamic programming method.

In principle, the minimization problem (7) can be solved
using some method of parameter optimization. This will yield
the required results (as described above), however, this
method of solution corresponds to a batch processing of the
measurements. In general, a recursive solution (which will
furnish, at each time, tw only the last optimal estimate, xn,
based on the measurements history Yn) is more desirable than
the corresponding batch algorithm because of obvious imple-
mentation considerations. Therefore, we will reformulate the
minimization problem in a dynamic programming setting,
which will then allow us to outline a recursive solution (filter).

In the sequel, we shall assume that the dynamics matrix is
invertible (this is a common assumption in information filter-
ing algorithms; the dynamics matrix is guaranteed to be
invertible when the discrete mathematical model of the system
is derived via a discretization of an originally continuous
model). We may, therefore, rewrite the system equation in the
following way:

Now define the following sequence of functions:

(8)

(9a)

and for n = 1,2,...:

t(xn) := ^min

n-l
_L_ y ||-ip^ 2^ ll^ih

Ar = 0

Z
k = 0

(9b)

A few remarks are in order here. First, note that because of
the constraints of Eq. (7b) Sn(xn) is indeed a function of xn
only [and not of the entire sequence X" that appears in the
second term of Eq. (9b)]. Using these constraints we can
express any xt (for / ^ ri) in terms of xn only. Note also that
Sn is not a function of the process noise sequence {M^}/> ~0,
since it is defined as the result of a minimization w.r.t. this
sequence. Finally, comparing the definition of Sn(xn) in Eqs.
(9) and the minimization problem defined in Eqs. (7), we
observe that a further minimization of Sn(xn) w.r.t. xn will
result in the xn that minimizes /„, which is the required
optimal filtered estimate xn/n.

Since we are interested in a recursive algorithm, let us
rewrite Eq. (9b) in the following way:

Sn(xn) = min min x0 - f \\2
P , + \\yk -Hkxk ||

= min \ Sn _ .(F'l 1 [xn - Gn _,*>„ _ J)

,\\yn " (10)

which is a recursive equation in the functions St. It can be
shown17 that a recursive solution of the estimation problem
can be obtained by assuming solutions of the form

[which means that Sn(xn) attains its minimum at the a posteri-
ori estimate xn/n] and proceeding with a step-by-step mini-
mization (r* is the minimization residual). The following
remarks are made:

1) Minimization of S0(*o) w-r-t- *o provides the updated (a
posteriori) estimate JCO/G. On examination of Eq. (9a), it is seen
that this estimate is obtained by augmenting the a priori
information on x0 with the additional measurement informa-
tion in such a way that each information is weighted accord-
ing to its certainty level (represented here by the covariance
inverse).

2) The outlined procedure furnishes, at each time step, the
a posteriori estimate. Although this may be satisfactory in
many cases, it is easy to see that, through a reformulation of
the problem, the minimization process can be reorganized into
two consecutive stages such that, in addition to the a posteri-
ori estimate, the a priori estimate also will be obtained, thus
conforming to the more common two-stage representation of
the Kalman filter.

To meet this end, Eq. (10) will be rewritten as

Sn(xn) = min (X _ .(F-l ,[xn -G^.w^,])

which also can be written as

where Tn(xn) is defined as:

subject to the equality constraints, Eq. (7b).

(12)

(13)
Examining Eq. (12), we see that Sn is the sum of two terms,
the second of which expresses the information contributed
solely by the last acquired measurement (yn). Remembering
that xn for which Sn attains its minimum is the a posteriori
estimate xn/n (which is based on the whole measurement
history Yn\ we conclude that the value of xn that minimizes
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684 Y. OSHMAN J. GUIDANCE

Tn(xn) is the a priori (time-propagated) estimate, which is
based on the measurements Yn~ 1 = {.VovJ^-i}- It can be
shown15 that there also exists a recursive equation for the
functions Tn, whose solution, augmented by a minimization at
each step, furnishes the a priori estimate at each time step.
This solution can be written as:

ln(xn) — \\Xn ~ Xn/n — 1 \\ P - l (14)

which is analogous to the form of the solution for Sn [Eq.
(11)] (p* is the minimization residual). Using Eq. (14) in Eq.
(12), we obtain

Sn(*n) = \\*n ~ *„/„-1 HI-.! _ , + ||.F» ~ #«*« \\l- l + Pi (15)

which (noting that xn/n is the result of the minimization of the
last expression) means that the a priori estimate xn/n _ l is
treated by the estimation process as a "measurement," in
addition to yn (this is true for any information filter5). In a
similar fashion, if in Eq. (13) Sn _ i(xn _ x) is expressed in terms
of xn __ ! / „_ ! using Eq. (11), the following expression is ob-
tained for Tn(xn):

Tn(xn) = mm ( \\F~1
»>n -1

— Xn _ i / n _ i | |p_i

- Gn _ ,wn _ J

(16)

Summarizing the presentation of the dynamic programming
approach to optimal linear estimation, the two-stage estima-
tion process is composed of the following recursive algorithm:

1) Measurement update: having obtained the a priori (time
propagated) estimate, the a posteriori filtered estimate xn/n is
obtained by minimizing Sn(xn) [Eq. (15)] w.r.t. xn.

2) Time update: having obtained the a posteriori estimate,
the a priori estimate xn/n _ ^ is obtained by minimizing Tn(xn)
[Eq. (16)] w.r.t. xn.

The method presented in this section will be used next to
develop both stages of the V-Lambda information filter. We
start with the measurement update algorithm.

III. Gain-free V-Lambda Measurement
Update Algorithm

The measurement update problem is as follows: Given the
square root spectral factors Vklk _ i and ̂ k- 1 of the a priori
information matrix Pk/k-i> where Pk/k-i *s the a priori
estimation error covariance, Vkjk _ i is the eigenvectors matrix,
Ak/k - 1 is the diagonal eigenvalues matrix and Pkjk _ l =
P*/*-iAfc/fc_iFfc/fc_i, and given the a priori normalized state
estimate ik/k-i [defined below in Eq. (18)], compute the a
posteriori square rootjactors Vk/k and A^/2, and the updated
normalized estimate dkk, defined ask/k,

(17)

The solution to the measurement update problem is summa-
rized in the next theorem.

Theorem 3.1: V-Lambda Measurement Update. Given: the
time propagated factors Vk/k_l and A^(?1? the nonsingular
measurement noise covariance Rk9 and the a priori normalized
estimate dkjk_l, where

dk/k -1:= ̂ k/k -1 Vk/k - ixk/k -1 (18)

define an augmented matrix AkeRn + m'n as
,-1/2 VT \
*k/k - 1 v k/k - 1 \ , , Q^

R~l/2H I

and perform a singular value decomposition of it to obtain

te* . — (2Q)

Then, the measurement updated spectral factors are related to
the singular value decomposition factors of Ak as follows

Vklk = Uk

Moreover, define bk as

bk: = k/k -1
-1/2.,

(21a)

(21b)

(22)

and premultiply it by 7j; then, partitioning the resulting
vector in accordance with the partition of bk, the updated
normalized estimate is found as follows:

(23)

where the meaning of the m -vector f2 will become clear in the
ensuing [in Eq. (31)]. (Note: YkeRH + m* + m and UkERn>n are
the orthogonal matrices of the eigenvectors of AkAk and
A%Ak, respectively, and JLkeRn*n is a diagonal matrix whose
nonzero elements are the eigenvalues of AkAk)

Proof: As shown in Sec. II (Eq. 15), the optimal estimate of
jtfc, based on the measurements {^o^iv^} can be obtained
by minimizing the cost function

— ||xk ~ Xk/k - 1 (24)

with respect to xk. Using the square root factors of Pk/k _ ]
and jR^1, Eq. (24) can be rewritten as

Sk(xk) = || A^1^ i VT
klk _ ,(xk - xk/k _ 0 1|2

-1/2

-1/2 J/T
k/k -I* k/k- l k/k - (25)

Now, using the augmented matrix Ak defined in Eq. (19),
normalized state estimate dk/k-\ defined in Eq. (18), and
vector bk defined in Eq. (22), Eq. (25) can be written as

(26)

Minimization of Sk w.r.t. xk is now a standard least squares
(LS) problem. We use the singular value decomposition to
solve it as follows.

Perform the singular value decomposition of Ak as in Eq.
(20). Then Eq. (26) becomes

which, after premultiplication by the orthogonal (and hence
norm-preserving) matrix Yk, becomes

(27)

(28)

(29)

Partitioning the second term in Eq. (27) as follows

we obtain

Sk(Xk) =
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SEPT.-OCT. 1989 GAIN-FREE SQUARE ROOT INFORMATION 685

(30)

from which we obtain the updated state estimate

Now, clearly, the minimum of Sk(xk) with respect to xk is where
reached when easily that

-m,n + m js orthogonal, then it can be verified

-bk\\2=\\Ckxk-hkf forxall xk

and

where from Eqs. (22), (23), and (28) it is clear that/! consists
of the first n elements of the column vector

4*-i
The minimum value of the cost function (the estimation
residual) is

= \\f.\\2 (31)

We have yet to prove the expressions for the updated
square root information factors (i.e., the factors of P^), and
to accomplish that we use the following well-known result.7
For the solution JCLS that minimizes the LS criterion
J = \Ax — b\\2, the error covariance matrix is given by

P:=E{[X-. ~. ~[T\ _ / A T A\ -— *LsJ ) — (A A)

Employing Eq. (32) in our case we obtain

but

pk/k =

— 1 _ I/
k/k = * k k/k

(32)

(33)

(34)

then, because of the uniqueness of the spectral decomposition,
necessarily

- 1/2 _
—

vklk = uk

(35a)

(35b)

Using Eqs. (35) in Eq. (30) and noting the definition Eq. (17),
we observe that the updated normalized state estimate is

&kik =/i (36)

which ends the proof.

Discussion
As we have outlined above, the updated normalized esti-

mate is read from the vector Ykbk. This, however, does not
mean that the matrix Yk [whose dimension is (n + m) x
(n + m)] is actually formed and stored. According to the
standard Golub-Reinsch algorithm7'18 Yk is not computed
explicitly but rather is applied as it evolves during the consec-
utive orthogonal transformation process, to the vector bk
(indeed, when one wishes to compute Yk one has to define the
entries to that algorithm in a particular way).

Another remark that pertains to the computation efficiency
is the following. When there are many measurements to be
processed (i.e., when m is large relative to «), one may apply
an orthogonal transformation to the (n + m) x (n + m) matrix
[Ak bk] to obtain an (n + 1) x (n + 1) upper triangular matrix
[Ck hk], as a preliminary step before the singular value decom-
position.19 Thus, if [Ak bk] and [Ck hk] are related by

n cols. 1 col.

n + 1 rows
m — 1 rows

Therefore, the same results are obtained if singular value
decomposition is applied to Ck and hk instead of Ak and bk.
At the same time, the saving in computer storage may be
substantial because the transformation can be arranged so
that rows or groups of rows of [<4*|̂ *] are processed sequen-
tially in forming [C^|AJ; thus the minimal storage required for
this processing would be (n + !)(« + 2)/2 locations for the
upper triangular matrix [C *̂.] plus n 4-1 locations for one
row of t*4&|^*L as compared to the (n +m)(n + 1) locations
needed for all the elements of [̂ 1 ]̂-

In the next section we present a V-Lambda time update
algorithm that, when combined with the current measurement
update algorithm, forms a complete square root estimator.

IV. V-Lambda Time Update: An Information
Algorithm

Given the a posteriori square root information factors Vk/k
and A^J/2, where Pk/k = Vk/k\k/kVk/k, the next theorem
shows how to propagate these factors in time to get the a
priori factors Vk + l/k and A^~+/2

/A:.
Theorem 4.1: V-Lambda Time Update. Given: the measure-

ment updated factors Vkjk and A^J/2, the nonsingular transi-
tion matrix Fk9 the input gain matrix GkeRn'p and the
nonsingular process noise co variance QkeRp'p, the time-prop-
agated spectral factors are computed according to the follow-
ing algorithm.

Define the augmented array BkeRp + n*p + ":

Qk 1/2 0
(37)

and perform a partial triangularization of it; that is, find an
orthogonal transformation T such that20

'Mk Lk

0 Nk
(38)

where MkeRp*p is upper triangular. Now, perform a singular
value decomposition of Nk in Eq. (38) to obtain

= WkSkZT
k (39)

where Wk9 Zk are the orthogonal matrices of the left and right
singular vectors of Nk9 respectively, and Sk is the diagonal
singular values matrix; then, the a priori eigenfactors at tk+l
are given by

=

I/A:

(40a)

(40b)

and the time propagation of the state estimate is performed
according to

k + l/k (41)

(which is in accordance with the regular Kalman filter al-
gorithm).
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686 Y. OSHMAN J. GUIDANCE

Proof: Following the result derived in Sec. II, we have to
minimize the following cost function in order to find the time
propagation algorithm:

= mn

with respect to xk+l. We shall perform this minimization in
the following two stages:

1) Minimization of the right-hand side of Eq. (42) w.r.t.

2) Minimization of the result of stage (1) w.r.t. xk + l.
To perform the first stage of the minimization, write Eq.

(42) in the following (algebraically equivalent) form:

(43)

where use has been made of the spectral factors of the
information matrix that appears in Eq. (42). Now, perform a
triangularization of the augmented matrix that premultiplies
wk in Eq. (43), i.e., find an orthogonal transformation T such
that

Mk

0 (44)

where Mk is upper triangular. Since the orthogonal transfor-
mation T is norm-preserving, use of Eq. (44) enables us to
rewrite Eq. (43) as

/XDI J k

where the vectors
'/<iJk

:=T

*£2) are defined by

0

(45)

(46)

From Eq. (45) it is easy to see that the minimum value of
Tk + fab +j) w.r.t. wk occurs at that wk for which the first term
in Eq. (45) is zero, and then

T (x ) = ||/(2)||2 (47)

In Eq. (47) the dependence of Tk +1 on xk +1 is implicit. For
the purpose of the next stage of the minimization, we have to
express this dependence in an explicit form. To meet this end,
we rewrite Eq. (46) using a partitioned form of the matrix T:

0

k+i-Fkxk/k\
[ — Fkxkik\ (48)

Substituting f$ from Eq. (48) into Eq. (47) and using Eq.
(38), we obtain

Tk + i > = \\Nk[xk + l-Fkxk/k]\\2

(49)

which, employing the singular value decomposition of Nk in
Eq. (39), can be rewritten as

k + l- Fkxklk ZkS2zr (50)

From the last result it is easily seen that the minimizing value
of xk + l is

k + I/A: = (51)

Furthermore, using the LS result stated in the preceding
section [Eq. (32)], we readily obtain

* k + l/k (52)

from which, after a comparison with the spectral decomposi-
tion of Pj~+ 1/fc, Eqs. (40) result, ending the proof.

V. The V-Lambda Information Filter
Having developed the algorithms for both the measurement

update and the time update stages, the square root V-Lambda
algorithm is complete. For convenience, it is summarized in
Table 1. We note, however, that in the presentation of the
dynamic programming method, which was used to develop
the filtering algorithm, it was assumed that the various
stochastic processes driving the system and the measurement,
as well as the random initial condition, are all Gaussian
distributed. This implies that the resulting filtering algorithm
is optimal under the Gaussian distribution condition and, at
the same time, gives rise to the question: What can be said
about the filter's optimality when this condition is not met?
The rest of this section is concerned with this question. It will
be shown that when the system is not Gaussian, the V-
Lambda algorithm is still the optimal linear filter (i.e., the
optimal filter among the restricted class of linear filters).

The method by which we show this follows. As is well
known, the (conventional) Kalman filter is the optimal linear
filter, even in cases where the system and/or measurement are
driven by non-Gaussian noises.16 Hence, in order to show that
the V-Lambda filter has the same property (although derived
under the assumption of Gaussian noise), it suffices to show
that the V-Lambda filter is algebraically equivalent to the
Kalman filter. We prove, therefore, the following theorem.

Theorem 5.1: The V-Lambda filter (Table 1) is algebraically
equivalent to the (conventional) Kalman filter.

Proof: We break the proof into two parts, each one of
which will examine one of the two algorithms comprising the
corresponding two stages of the V-Lambda filter.

The measurement update stage. Using the measurement
update equations (19), (20), and (21) (Theorem 3.1), we can
write

-1/2 J/T
k/k - 1 V k/k - 1 = Yk(~*£ \n,>

Premultiplying each side of this equation by Yts transpose, we
obtain for the left-hand side:

= Vk/k _ i k/k - i

k Hk

^-1/2 yT

Rk
l/2Hk
? — 1 £ 7

(53)

and, similarly, for the right-hand side:

T/ / A -1/2 rv /A^/2W,, = Kfrk/k

(54)

From a comparison of Eqs. (53) and (54) we obtain

Pkik = Pk/k-i + H*RklHk (55)

which is the Kalman filter measurement update formulated in
information mode.16 Thus we have proved that the algorithm

D
ow

nl
oa

de
d 

by
 T

E
C

H
N

IO
N

 -
 I

SR
A

E
L

 I
N

ST
 O

F 
T

E
C

H
 o

n 
A

pr
il 

14
, 2

01
6 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/3

.2
04

62
 



SEPT.-OCT. 1989 GAIN-FREE SQUARE ROOT INFORMATION 687

Table 1 V-Lambda filtering algorithm

System model: ** + i = Fkxk + Gkwk, xeR",wERp, E{wk} = 0, E{WJW 1} = Qkdjk

Measurement model: yk=Hkxk+vk, yeRm, E{vk}—Q9 E{VJV %} = Rkdjk

Initial conditions: E{xo} = A1 ^{[*o~~rf[*o~t*]7} = PO

State estimate: *k/k

Time update

Spectral factors Bk •.=

singular

(Mk Lk

\ 0 .ty

0 ^-\j2yTkf-\ ]
k/k yk/k*k ^

T orthogonal20

MkeRp>p upper triangular

c decomposition -l/k •

Measurement update

singular value^ m
^ decomposition

\
0/

Read: /2e*»

for measurement update of the information eigenfactors [Eqs.
(19-21)] is algebraically equivalent to the corresponding
Kalman filter algorithm. To complete the proof of this part,
we still have to prove the equivalence of the state estimate
algorithm. This is done next.

Using Eqs. (22) and (23) we can write

from which we have

Also, using Eq. (53) we obtain

(56)

hepce

(57a)

(57b)

From Eqs. (57) we can express ^11,̂ 21 in terms of the
information eigenfactors and the measurement geometry and
statistics:

! Vllk _ l (58a)

(58b)

Now substitute Eqs. (58a) and (58b) into Eq. (56):

Vk/k - l^k/k - l"k/k - 1

from which, after some algebraic manipulation and using the
definitions (17) and (18) we obtain

A:/A:- lXk/k- 1

which is the state measurement update equation in the infor-
mation mode Kalman filter.16 This completes the proof of the
first part of the theorem, namely, that the V-Lambda mea-
surement update is algebraically equivalent to the correspond-
ing Kalman filter algorithm.

The time update stage. Expressing the transformation ma-
trix i in partitioned form [as it appears in Eq. (48)] and using
Eq. (38), we have

from which, using the singular value decomposition factors of
Nk in Eq. (39) and their relations to the propagated eigenfac-
tors in Eq. (40), we obtain the following expression for T22:

?22 = Wk^2
llkVT

k + llkFkVklk\tfk (59)

Again, using the partitioned form of i in Eq. (44), we have

FklGk = 0

from which, using Eq. (59), we obtain the following expres-
sion for T21:

/i- T/F/ A — 1/2 1/T /"« f\ 1/2 //;rt\
T2j = — Wkl\k _(_ l/k * k + l/k^k^k \^^J

Since the transformation T is orthogonal, its block elements
must satisfy

= (61)

where 7 is the identity matrix. Upon substitution of Eqs. (59)
and (60) into Eq. (61), and after some manipulation, we
obtain

-i/k
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Fig. 2 Standard deviation of the estimation error of x2.

which is the covariance time update in the Kalman filter. This
proves that the time update algorithm of the V-Lambda filter
is algebraically equivalent to the conventional Kalman al-
gorithm [note that the state update algorithm (41) is identical
to the corresponding Kalman filter algorithm]. Thus the proof
of the theorem is completed.

Having proved Theorem 5.1, which shows that the new
algorithm is the optimal linear filter also in the non-Gaussian
case, the presentation of the new V-Lambda filter is com-
pleted. In the next section we demonstrate its numerical
robustness with an example.

VI. Filtering Example
In this section we present the results of a simple filtering

example, in order to demonstrate that the new V-Lambda
algorithm works satisfactorily and to demonstrate the supe^

rior numerical stability and accuracy of the new algorithm
when compared to the convenient Kalman filter algorithm.
Example 6.1

The dynamical system is described by the following dis-
crete-time mathematical model:

(62a)

(62b)

xk + i =

yk=Hk+ vk

where

-1 0 0'
1 0.01 0

E{vk} = 0 E{vpl} = diag {0.1

P0 = E{[x0 - E{xQ}][x0 - E{x0}] r}

= diag {0.25£ + 5, 0.25£ + 5, 0.25E + 5}

The initial state vector and its estimate are chosen as

) = [o.oi;o.i,i]r, = [ 1,0.5,0.005]

Both the V-Lambda filter and the conventional Kalman
filter are used to obtain the estimate of the state vector. The
V-Lambda filter is implemented in single precision (SP), while
the conventional filter is used both in single and in double
precision (DP). All runs were performed on a t)EC VAX 8650
machine. In Figs. 1-3 we show the time histories of the
standard deviations of the estimation error components as
obtained by the three filters used. As can be seen from these
figures, the V-Lambda filter and the DP conventional filter
behave identically. The SP conventional filter loses numerical
significance after about 20 s of estimation, which results in
negative variances along the diagonal of the covariance matrix
(the corresponding square roots are plotted as negative values
in these figures). In Figs. 4-6 the time histories of the absolute
values of the estimation error components are shown, as
computed by the three filters. It is interesting to note that
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, 4 Absolute value of the estimation error of *,.

0 10 20 30 40 50 60 70

Time
Fig. 5 Absolute value of the estimation error of x2.

although the SP conventional filter diverges at a certain time
point in the process, it regains stability afterwards; this phe-
nomenon also has been observed and explained by Bellantoni
and Dodge.3

VII. Conclusions
A new, information type, V-Lambda square root filtering

algorithm is presented in this paper. The new algorithm is
based on the singular value decomposition as the main com-
putational tool, which renders it exceptionally numerically
robust and accurate. The continuous availability of the co-
variance eigenfactors to the user is an additional merit of the
proposed method.

Compared to other state-of-the-art square root filters, the
new algorithm is computationally more costly (because of its
reliance on the singular value decomposition). However, the
advantages of the V-Lambda filter justify the additional com-

~O 7
13

'E§••

0 10 20 30 40 50 60 70 80 90 100

Time
Fig. 6 Absolute value of the estimation error of jc3.

putation load. Moreover, because of the increased popularity
of the singular value decomposition as a design tool in control
problems and with the current vast development in the areas
of parallel computation of the singular value decomposition,
it is anticipated that the new algorithm eventually will become
increasingly attractive as its computational requirements are
reduced.
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