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Selective Modal Control Theory for
Piezolaminated Anisotropic Shells
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and
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Technion—lIsrael Institute of Technology, 32000 Haifa, Israel

A general selective modal control design methodology is presented for piezolaminated anisotropic shell systems,
which uses selective modal transducers recently developed by the authors for piezo-shells in order to realize any
number of possible modal control strategies. A selective modal control design procedure, which defines a step-by-
step framework through which structural and control subdesign processes are effectively integrated, is specified.
Several conditions that sufficiently ensure asymptotic stability are derived and then discussed in the context of
deriving selective modal control methods, which are stability-robust to modeling and implementation errors.
Several design examples are given. A numerical example is then presented in which a stability-robust optimal
selective modal control design is developed for a cantilevered anisotropic cylindrical shell panel. Maintaining a
linear feedback law, a selective modal transducer is employed, whose design parameters were chosen so as to
optimize the system response to a given initial excitation. Frequency and transient response analyses demonstrate
a dramatic enhancement in system performance and are shown to accurately concur with theoretical predictions.

I. Introduction

ITHIN the past decade several vibration control tech-

niques have been developed for simple beam and plate sys-
tems, which use distributed piezoelectric transducers formed from
polyvinylidine fluoride (PVDF). PVDF actuators whose spatially
varying piezoelectric field properties were exploited to provide for
the simultaneous control of all modes or special modal subsets in
cantilevered and simply supported beams have been designed.!?
Miller and Hubbard developed a reciprocal sensor theory and sub-
sequently incorporated PVDF sensors and actuators into multi-
component systems in which each component itself was a smart
structural member.? Burke and Hubbard* developed a formulation
for the control of thin elastic (Kirchhoff-Love) isotropic plates sub-
ject to most combinations of free, clamped, or pinned boundary
conditions, in which the active elements were spatially varying bi-
axially polarized piezoelectric transducer layers. Lee’ generalized
the classical laminate plate theory to include the effect of lami-
nated piezoelectric layers and thus to provide a theoretical frame-
work for the distributed transduction of bending, torsion, shearing,
shrinking, and stretching in flexible anisotropic plates. Miller et al.®
subsequentlyemployed Lyapunov’s second method to derive a gen-
eral active vibration suppression control design methodology for
anisotropic laminated piezoelectric plates.

The aforementioned vibration control strategies share several
common limitations. Although all of these methods reduce the vi-
bration control task to a selection of individual piezolamina field
functions, none offers a general method for determining those field
functionsso as to ensure active vibrationsuppression. A poor choice
in piezo-field functions, although guaranteed not to destabilize the
structure through the active addition of vibrational energy, can ex-
tract little or no vibrational energy from the system. Furthermore,
often the designeris concerned with suppressing vibrationsin only a
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certainmodal subset. The generalizedfunctionapproachto choosing
spatial field functions?* although adequate in certain scenarios for
guaranteeing some measure of active energy extraction from all
modes, generally will not be able to provide a means to selec-
tively target a specific modal subset. Finally, most methodologies
just mentioned have been exclusive to isotropic systems and are
thus incompatible for use with orthotropicand anisotropic aeroelas-
tic structures commonly encountered. Ultimately these limitations
would be best answered through the development of a selective
modal control (SMC) methodology in which the designer optimally
uses embedded piezolaminas to most effectively realize any admis-
sible performance objective. The authors recently developed such
a methodology for anisotropic plates’ and validated their results
through both numerical and experimental analyses?

This paper extends the SMC theory to piezolaminatedanisotropic
shell systems and in particular those shell systems whose geome-
tries are deformable onto a plane. A broad class of stability robust
SMC approaches is defined through the identification of sufficient
conditions that ensure global asymptotic stability without requir-
ing perfectknowledge of design parameters, structural constants,or
modal behavior. Specific SMC design examples are given, and the
design approach is illustrated via a numerical example involving a
piezolaminated anisotropic cylindrical panel.

II. System Description
A. Geometry

Figure 1 provides a geometric definition of the composite shell
structure under consideration. There exist exactly N laminated lay-
ers, all of which are consideredto be piezoelectricallyactive: piezo-
electric constants relative to the nonpiezoelectric substructure are
set to zero. Material properties within each lamina are assumed con-
tinuous. The electromechanical transduction effect of each lamina
can vary spatially. An orthogonal curvilinear coordinate frame is
defined by the unit vectors &, &,, and &;. Piezolaminas sublayers
are assumed to be transversely anisotropic, that is, monoclinic rel-
ative to the &3 axis. The reference surface of the shell is located on
the o3 = (a3)¢ plane. The reference plane itself can be arbitrarily
located, although it is typically assigned to the structural midplane.
In orthotropicand isotropic structures, however, the reference plane
is designated as the neutral plane. Defining the distance in the &;
direction between any arbitrary point and the reference plane as
z, any arbitrary point (o, o2, ov3) can be equivalently expressed
as [ay, oy, (a3)9 + z]. The infinitesimal distance ds between two
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Fig.1 Geometry of general piezolaminated shell system.

arbitrary points (¢, o, o3) and (o) +doy, oy +das, a3 +dag) of
a shell element in the curvilinear frame is given as’

ds* = Li(da))* + L3(doy)? +da3 1)
where the Lamé coefficients L; and L, are defined as

Ly = A(+2/Ry), L= A +2/R) Q)
and A; and A, are the Lamé palrarneters.”J R; and R, are the radii
of curvature correspondingto the &, and &, directions, respectively.
Lamé parameters and radii of curvature for several common struc-
tural geometries can be found in the literature’ The discussion to
follow is limited to zero-Gaussian curvature shells, that is, shell ge-
ometriesdefined suchthat1/R; R, =0, whichincludeall geometries
that are developable onto a plane.

The @; locations of the surfaces of each individual lamina are
defined such that the bottom layer of the composite shell is assigned
the index k = 1 and the indices increase unitarily. The distance from
the reference surface to the lower, upper, and middle surfaces of
any given lamina are respectively defined as zx — 1, zx, and z}j. The
thickness of any given lamina is defined as #*. The composite refer-
ence surface is displaced at some distance («3)o from the origin of
the coordinate frame. The composite thickness is defined as /. The
upper and lower surfaces of the composite are respectively located
at heights zy and zg.

B. Equations of Motion

Using either first-order shear deformation theory (FOSDT) or
classical Kirchhoff-Love approximations, the equations of motion
of the general system described in Fig. 1 can be derived and ex-
pressed in the explicit form!'!

1 N
x, +Cx, + Kx = mDT<Ze§Aka) 3)

k=1

1
ke =// Ex)Tek A¥dA + CFVE )
q"(t) AAIAZ( ) e,

where the subscript ¢ refers to partial differentiation with respect
to time and A is the surface area of the shell. Boundary conditions
are stated in Ref. 11. Equation (3) is the mechanical displacement
equation of motion, while Eq. (4) is the (definite) integral form
of the electrostatic charge displacement equation for this class of
materials. Equations (3) and (4) can be respectively considered as
the governing actuator and sensor equations, where x is a vector
of mechanical displacements, g*(¢) is the electrostatic charge dis-
placement relative to the kth sublaminate, and V*(¢) is the voltage
applied across the kth sublaminate. The capacitance of the kth sub-
laminate is given as C*. The composite mass density is given as
p, while D and £ are ordinary linear differential operators defined
in Ref. 11. The (mass-normalized) stiffness operator X is a fourth-

order positive semidefinite and self-adjoint differential operator!!
and is defined as

A 1 1 A B
K= ——D'—— & 5
,Ol’lAlAz A1A2 [B D} ( )

where A, B, and D are matrices of constitutivemechanical constants
that characterize the mechanical stress-strain behavior of the com-
posite system. The damping operator C can be any operator that
commutes with K and satisfies

cit)>0V >0

¢;(0)=0 ©

(@, Ch;) =c; ()5,

where c;(t) is piecewise differentiable, ¢, is the jth eigenvectorof
K and §;; is the Kronecker delta function. The electromechanical
field strength of each piezolamina is described mathemetically via
the product ef A¥, where A* = A¥(a;, a,) is a dimensionless and
spatially varying piezoelectric field distribution function and

T
d2[(h), (), (), k), =(eh), e, ]
(7)

The piezoconstants (e%,)o, (e%,)0, and (e¢)o are defined relative to
the point of maximum electromechanicaltransduction so that A* is
normalized, that is, the maximum value of A is unity.

Equation (4) can be rendered into more advantageous forms by
recalling that the measured currentis by definition the time deriva-
tive of the developed charge and that the voltage measured across
the electrode surfaces is found by dividing the developed charge
by the film capacitance. In practice an output measurement, which
is directly related to mechanically induced strain, is desired. Thus
the most useful sensor current or voltage relationshipsare found by
manipulating Eq. (4) such that

iy =it (r)—c"d—vk = ! Ex)TeEA da  (8)
s m Podr B A1A2 1 0

k _ k _ k _ L l T k Ak
Vi) = VE@) — VE@) = o f/A e (Ex)TekAFdA (9)

where i¥ () and V}(¢) are the kth lamina current and voltage di-
rect measurements. The consequence of Egs. (8) and (9) is that the
same piezoelectriclayer can be used simultaneously as both a sen-
sor and as an actuator through the use of differential circuitry and

electronics.!”

III. Selective Modal Transducer Theory
A. Description

In Ref. 11 a selective modal transducer (SMT) theory was pre-
sented that allows for the selective excitation and detection of each
and every mode of an anisotropic piezolaminated thin shell. SMTs
are critical to the developmentof a SMC methodology.

The following set of SMT construct conditions are imposed:

Condition C1: Exactly n transducer layers are located strictly
above the reference surface and exactly n transducers are located
strictly below the reference surface (N =2n).

Condition C2: There are at least six piezoelectricallyactive layers
(2n > 6).

Condition C3: For each layer above the reference surface,
there exists a layer below the reference surface such that {z* =
_Zk+n}n: .

Condkitizl)n C4: Layers located at heights z¥ and z¥*" both are
associated with the identical piezo-property vector .

Condition C5: The piezo-property vectors {el}?_, associated
with at least three layers above and likewise below the reference
surface are different.
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Adhering to the preceding conditions leads to the following
lemma, provenin Ref. 11.
Lemma I: Let R < W% be the matrix defined as

N
RZ Zeﬁ(efj)T (10)

k=1

Then, if C1-C5 hold, R is invertible.

Lemma 1 is central to SMT formulations for both FOSDT
and classical Kirchhoff-Love system descriptions. Although the
FOSDT-based SMT formulation yields the same central result, for
simplicity the SMT central theorem that follows is stated for a sys-
tem whose equations of motion are governed by Kirchhoff-Love
assumptions. The following theorem was proven in Ref. 11.

Theorem 1: Consider an anisotropic (Kirchhoff-Love) thin shell
containing N piezolaminas whose equations of motion are given by
Eq. (3). Assume that each lamina is to function as a self-sensing
actuator such that the sensed measurement of the kth layer is given
by Eq. (8). Let the measured state i, (¢) be formed from the weighted
sum of the sensed currents of each individual lamina such that

N
(=Y ghi(t)

k=1

Let the time-bound controlinput V*(¢) of each piezolamina be pro-
portionalto anidenticaltime-dependentcontrol function V, (¢), such
that V¥(t) = g} V,(1). Assume that C1-C5 are satisfied. If the piezo-
electric field distribution functions of each active layer are given by

1 T 1 A B -
A= —(e) R°!—— & 11
gé(eo) e [B D} é (1)

where the weighted modal sum
- A >
6= 0,
j=1

and the scaling factor g is defined as

gh = max
(a1,02)€ A

w1 A B] .
() R YW [B D}&;&‘ (12)

then the measured state is reduced to the form

(1) = ph Y a;hq;(0) (13)

j=1

and the mechanical equation of motion [Eq. (3)] is reduced to the
form

Gj+cjq;+rjq; =ojh;Va(t) (14)

forallintegers j > 0, wherec;, A ;, and g; arerespectivelythe modal
participation factor, eigenvalue, and generalized modal velocity
associated with the jth eigenfunction.

B. Discussion
1. Controllability and Observability

The conditions stated in Theorem 1 are sufficient to ensure com-
plete controllabilityand observability. There may exist simpler con-
ditions that can guarantee the same.

2. Self-Sensing Actuation

For the sake of generality, Theorem 1 assumes that each piezo-
sublaminate functions as a self-sensing actuator, yielding an SMT
that functions as a self-sensing modal actuator (SSMA). Each layer
can also assume dedicated actuator or sensing functions so as to
yield an SMT that functionsas a dedicated selective modal actuator
(SMA) or a selective modal sensor (SMS).!!

3. Required Number of Layers

For an anisotropic structure no more than six piezolayers are
required to guarantee complete controllability and observability of
every structuralmode.!! Any advantageof employing more than six
layers needs to be traded against fabrication complexity, increased
structuralstiffness,etc. For orthotropicstructuresno more than three
layers are required. A single layer is sufficient to provide complete
controllability and observability of an isotropic structure.!!

4. Layer Placement

The piezoelectric field functions and gains [Egs. (11) and (12)]
are implicitly related to z* so that SMT performanceis insensitiveto
the distance from the neutral plane. Electrical continuity, bonding,
and other fabrication concerns are critical to the design process.
Many of these issues were investigated in a recent experimental
demonstration of the SMT design on an orthotropic plate .

IV. Selective Modal Control

SMTs can be used to implement a number of modal control strate-
gies for composite shells in which both the SMT design and control
law are chosen so as to optimize or else prespecify the dynamic
response of a targeted modal subset. These SMC strategies can be
designed so as to guarantee asymptotic stability regardless of errors
that occur in the design process. Moreover, the freedom to arbitrar-
ily determine SMT behavior as part of the design process typically
leads to enhanced system performance and reduced burden on the
control law itself.

A. General Definition

The system description is now further generalized to include the
possibility of multiple SMTs. Multiple SMTs, althoughnotrequired
for controllability, are considered in order to provide more options
forrealizinga desireddesign objective. The independentmodal con-
trol (IMC) approach,'® for example, would require as many SMTs
as targeted modes. Although each mode could be controlled inde-
pendently, an alternative control strategy using a single SMT to
control multiple modes can be theoretically less optimal but dras-
tically simpler to fabricate and implement. On the other hand, an
IMC implementation could be the best approach for controlling a
few modes of an isotropic structure because isotropic structures re-
quire only a single piezolayer per SMT.

Theorem 1 states that if certain conditions (C1-C5) regarding the
location, orientation, number, and electromechanical transduction
of piezosublaminasare obeyed then the SMT design process allows
for the equations of motion of an anisotropic composite shell to be
reduced to the form of Eqs. (13) and (14). Assuming thateach SMT
requires exactly N piezo-sublaminas and assuming the existence
of exactly p dedicated SMAs and ¢ dedicated SMSs, the general
mechanical equation of motion of the form

1 p-N
x, +Cx, + Kx = mDT<ZeSAk Vk) (15)

k=1

can be reduced via Theorem 1 to the expression

p
C‘].m + cm qm + )\-mqm = Z C(,l,l )\-m Val (t) (16)

=1

while the ¢ SMS output equations become

i) = ph Y BIAig; (o).
j=1

The driving voltage of the /th SMA (I €[1, ..., p]) is referred to
as Va’ (t) and the measured current of the nth SMS (ne€[1, ..., q])
as i”(¢). If the /th SMA is self-sensing (i.e., an SSMA), then for
somenell,...,ql,/=n and ﬂ}’ =<xj. for all j. The mth mode is
controllable only if at least one o/, # 0 for some / €[1, ..., p] and
observable only if at least one B #0 for some [ €[1, ..., q]. Let
R be an r-dimensional subset of modes targeted for active control.
Because a,’n, Bl =0V m ¢ R, then from Eqs. (16) and (17) each
excluded mode is completely decoupled from all other modes and
hence will not lead to spillover in any active control strategy based

nell,2, ..., q] 17)
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solely on the targeted subset. Considering only the » modes in R,
Eqgs. (16) and (17) can be constructed in the form

q1 0 1 q1
d | gr 0 1 qr
di | g, —M — 7
. _)‘-r —Cr .
_qr_ - = _qr_
m 0 —
+ C{ll)\.] C{{’)\.] :
Lv]
_a}k, aﬁ’k,_

q1

P;/ph] [0 Bl o ﬂ}xr] :
qr

: : P
Li?/phJ L 0|Bi A ﬂi%J .
L gr |
or in abbreviated notation
0
X, = Ax, + [a} v, i=[0 Bk, (19)

where xT 2 [¢7 ¢'1" and the matrix definitions are obvious. For
convenience the output vector i contains the ¢ SMS current out-
puts normalized relative to ph. The matrices o € R"? and 3 € R4
are defined such that if the kth SMA is self-sensing then the kth
columns of o and 3 are identical.If all SMAs are self-sensing (and
no dedicated SMSs exist), a = 3.

SMC is realized when the matrices «, 3, and a control law of
the general form V =V(i) are established so as to best satisfy a
given performance objective. Design parameters can be chosen ei-
ther directly or else through the optimization of a general perfor-
mance index of the form J = J(x,, a, 3). In general terms, an
SMC design evolves through a step-by-stepprocess: 1) a composite
shell structural design is determined so as to satisfy any mechanical
requirements (mass, stiffness, fabrication complexity, etc.); 2) the
structure is modeled; 3) a suitable performance objective is estab-
lished and then optimized subjectto Eq. (19) to determine a suitable
control law and set of modal participation factors (MPFs); and 4)
the design is assessed, and, if no further reiteration is required, the
piezo-field functions (A¥) for each piezolamina are determined via
Eq. (11). The design is then implemented physically. Some of these
steps are now briefly considered.

1. Structural Design

The process of satisfying structuralrequirements will necessarily
dictate the number of piezolaminas to be incorporated and hence
the number of available SMTs. The structure must be designed such
that all SMT construct conditions are satisfied (conditions C1-C5).
Atleastsix laminas per anisotropicshell SMT are required, whereas
orthotropicand isotropic shells require three or fewer layers. From a
control standpointthe advantage of multiple SMTs may be small, as
many controldesign objectivesare likely to be sufficiently attainable
even via a single SSMA.

2. Performance Objective

Having obtained a satisfactory representation of Eq. (19), per-
formance objectives must be determined, which will dictate the
dynamic character of the actively controlled shell as well as the
stability robustnessof the system to errors that will inevitably occur

during the modeling and implementation phases. The consequence
of such errors is that the field distribution functions (A*), which
are ultimately implemented, will lead to an imperfect realization
of the MPFs (residing in o and 3) specified as the outcome of the
design process. Stability robustness is therefore assessed in terms
of the sensitivity of a given design to perturbations in o and (3.
In the sections that immediately follow, criteria are determined to
assess the stability robustness of a given design, and a number of
representative performance objectives are discussed.

B. Stability Robust SMC

In this section sufficient conditions that ensure asymptotic sta-
bility are developed and then discussed in the context of stability
robustness. Letting k€ [1,..., N]and [ €1, ..., p], it is conve-
nient to associate each of the p - N actuator laminas with unique
indices k and [. The (k, /) piezolamina is then uniquely associated
with a driving voltage V/(r), piezo-field function A!, and piezo-
property vector (eo)}. Each of the dedicated ¢ - N sensor laminas
may be likewise assigned an indexed pair (k,n) (ne[l,...,q])
and associated with A}, (eo); and a measured current iy () givenby
Eq. (8). If the (k, [) layer is self-sensing, then the (k, /) and (k, n)
piezolaminas are identical for some n €[1, ..., g]. The following
postulate is then introduced:

Postulate 1: Consider an anisotropicrectangular shell containing
at least p - N piezolaminas whose equations of motion are given by
Eq. (15). Then, if the entire set of control inputs {V/ (1)}, ="
satisfy

p

N
1
v! f/ Ex)T(en)t ALdA <0 20
E E () AAlAz(x)(eU)" (dA < (20)

I=1 k=1

the closed-loop system is asymptotically stable. If the (k, /) piezo-
laminais self-sensing,then the closed-loopsystemis asymptotically
stable if

p N
YD Viwiiw <0 @
I=1 k=1

Proof: Consider the following (positive definite) Lyapunov func-
tional

J—l hT+1(8)T1 AB(E)dA
2 ) P T A A, Y A, B bt

(22)

whose first and second terms in the integrand respectively represent
the kinetic and mechanical strain energy states as derived in Ref. 9.
The functional time derivativeis then

J= hT+l(8)T1AB(8)dA
=) TR A, Y A, | B ]t

(23)

Integrating by parts and applying Eq. (3), Eq. (23) can be rendered
into the form

P N
i==ph [ stenars 33 v
A

I=1 k=1

1 T,y Al
X /‘/A e (Ex,)" (ep) A, dA (24)

According to the second method of Lyapunov, the system is
asymptoticallystable if J is negative definite. Realize that Eq. (24)
is synonymous with energy flux and thatonly the second term on the
right-hand side (RHS) of the equation contains the influence of the
piezoelectric layers. The first term represents the energy flux inher-
ent to the passive system. Equation (6) establishes that the operator
C is positive definite; hence, the first term is always dissipative,and
the system will be asymptotically stable as long as the piezoelectri-
cally induced forces do not add energy to the system. Asymptotic
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stability is then contingent on the negative semidefiniteness of J s
where

P N
. 1
=YYV f/ ——(Ex) @) AldA  (23)
A 142

I=1 k=1

which is the condition stated in Eq. (20). Equation (21) then follows
directly from Eq. (8). O

Postulate 1 can be used to establish a criterion for asymptotic
stability, whichis centralto the developmentof stability robust SMC.
Define g, =[gq, - - - g,]7 for use in the following theorem.

Theorem 2: Consider an anisotropic rectangular shell containing
p SMAs whose equations of motion are given by Eq. (19). Then if
V =V(q,) is such thatg” aV <0, the closed-loop system is asymp-
totically stable.

Proof: A required SMA construct condition is that V/(t) =
(80)4 V! (t) (Theorem 1). Hence, Eq. (25) becomes

) p N 1
LEY Vi f /A T ER e ALdA (26)

=1 k=1

Theorem 1 also establishes that

N r
§ : 1
// A, (Ex,)T(go)i(eu)f(Af( dA = ph E C{j')\-j (1)
k=1 A q

j=1

27

SubstitutingEq. (27) into Eq. (26) and expressingthe resultin matrix
form

J, = ph(ql aV) (28)

the negative semidefiniteness of which is ensured by the condition
stated in the theorem. O

Several corollaries of Theorem 2, whose proofs are readily
established in Ref. 14, are critical to design SMC approaches
that are stability robust. Denote the element by element Schur
product!’ of two matrices A and B as A o B and define sgn(i) =
[sgn(i, /ph) - - -sgn@! /ph)]".

Corollary 1: Consider an anisotropic rectangular shell con-
taining p=¢ SSMAs such that =0 in Eq. (19). Then if
V = —g(t) o sgn(i) for any arbitrary nonnegative functiong(r) € h?,
the closed-loop system is asymptotically stable.

Corollary 2: Consider an anisotropic rectangular shell contain-
ing p SMAs and ¢ SMSs whose equations of motion are given by
Eq.(19).Let V = —G(¢)i forany arbitrary G € R?¢. Then if cw and 3
are such that (aeG3") € R"" is positive semidefinite, the closed-loop
system is asymptotically stable.

Corollary 3: Consider an anisotropicrectangularshell containing
p =¢q SSMAs such that a = 3 in Eq. (19). Let V = —G(#)i for any
arbitrary G € i”°”. Then if G is positive semidefinite, the closed-
loop system is asymptotically stable.

Corollary 4: Consider an anisotropic rectangular shell contain-
ing p SMAs and ¢ SMSs whose equations of motion are given by
Eq. (19). Let min(p, ¢) =1 and let V= —G(¢)i for any arbitrary
G € NP1, Then if all elements of «, 3, and G are nonnegative, the
closed-loop system is asymptotically stable.

Theorem 2 and its corollaries establish the five cases given in
Table 1. Each case represents a set of constraints that can be im-
posed on the SMC objective to guarantee stability robustness. The
generality of these constraints allows for stability robust designs to

Table 1 Stability criteria case study

Case MPFs Min(p,q) Control law Stability criterion

1 a#B =1 V=V g, V=0

2 a=0 >1 V=V@ V=—g(t)osgn()
3 a#p3 >1 V=—Gi aGB” PSD

4 a=0 >1 V=-Gi G PSD

5 a#B3 1 V=-Gi Elements o, 3,G >0

be realized without requiring the collocation of sensors and actua-
tors (i.e., SSMAs). Although self-sensingactuationis advantageous
from a theoretical standpoint, practical factors, such as frequency
and temperature dependence of the external circuit,'> may favor
noncolocated transducers.

Case 1 is the most general of all cases listed, and it will be difficult
to use the associated stability criterion to assess stability robustness.
Case 2 is easily, but not necessarily, implemented via self-sensing
actuation. When SSMAs are used, the requirement that o = 3 is
ensured even when modeling and implementationerrors yield actual
MPFs that differ substantially from theoretical values. Case 3 is a
general linear method in which stability robustness depends on the
sensitivities of the eigenvalues of «GB” to perturbationsin o and
3. Case 4 is a linear subset of case 2. Case 5 provides a condition
that can be verified through test: each targeted mode can be excited
individually and the sign of each specific modal participation factor
determined.

C. Representative Performance Objectives
1. Nonlinear Selective Energy Extraction

Several possible performance objectives are now explored. SMC
approaches based on many other performance objectives can be
found in Ref. 14. In the first example a nonlinear SMC method
is derived (i.e., «, B, and a control law are determined) whose
objectiveis to explicitly define the contributionof each mode to the
active energy extraction rate. Case 2 (Table 1) stability criteria are
imposed so as to ensure a stability robust design; hence, & = 3, and
the control law is V = —g(¢) o sgn(i). Recalling thati = a’q, [via
Eq. (17)], the control law becomes

V = —g(t)osgn(i) =

—|:g1(t) Sgn<z “}ljéh)

j=1

T
g’ sgm(z a;’quj):|
=

(29)

where g/ (¢) is the /th (PSD) element of g(z). Substituting Eq. (29)
into Eq. (28), the energy flux can be expressed in the form

P r
Jy==phY_ g0 aihid;0

I=1 j=1

(30)

The character of the energy extraction rate can then be specifically
determined by the arbitrarily chosen elements of g(t) e R”. Two
special cases are worth mentioning:if p =1 and g(r) = 1, then

o= —ph| > aihiq;(0) 31)
j=1
whereasif p=r, g(t) =[1 1]" and a; =a;3;, then
oy =—ph Y lajhid; ()] (32)

j=1

From a structural point of view, Eq. (31) is the simplest possible
case (only a single SMT is required), whereas Eq. (32) is the most
complex(one SMT permode). NonethelessEq. (32), unlikeEq. (31),
avoids the existence of nontrivial state trajectories for which J, =0
and hence guarantees active energy extraction along any trajectory.

2. Linear Selective Energy Extraction
When the case 3 (Table 1) scenario is obeyed so that the control
law is V = —Gi, then the energy flux expression[Eq. (28)] becomes

J, = —ph[q! (@GP)q,] 33)

from which an energy-based linear method can be derived. The
performance objective s to select a, 3, and G(¢) so as to maximize
the energy extracted from each targeted mode relative to a specified
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weighting. The control law transforms Eq. (19) into the (closed-

loop) system equation
A 0 0
A, =A - (34)

xa = Aaxaa T
0 aGp
IntegratingEq. (33) over the time intervalr = [0, # /], the total energy
that is actively added to the system via the piezoelectric laminas is
then

tf
J, = —ph / (4] (@GB)q. ] dt (35)
0

Introducing an arbitrarily specified state weighting matrix Q € %",
an optimal gain matrix G(¢) and set of MPFs (contained in «, 3)
can be determined through the maximization of the performance
index

tf )
7= [k ende 0[] o] 9

subject to Eq. (34). Because the optimal solution is stable, aG[3 is
PSD, and stability robustness is assessed through sensitivity of its
eigenvaluesto perturbationsin « and 3. If a = 3 (case 4, Table 1),
then stability robustnessis ensured a priori. However, enforcing that
a =3 will inevitably lead to an optimal value of the performance
index that will be less than the value obtained via the case 3 op-
timization (hence less effective control) because fewer parameters
are allowed in the optimization.

3. Eigenvalue Selection

Again returning to the general linear (case 3, Table 1) scenario,
the performance objective now considered s to find ¢, 3, and G so
as to move the open-loop poles as close as possible to a specified
set of desired locations. Defining

PA)=Ip1 - pal” 37)

Po = [(p1)o (por)ol” (38)

where p; is the jth (possibly complex) pole locationof A, and (p;)o
is the desired jth pole location, then the performance objective can
be realized through the minimization of

J =P —p)"0p—po) (39)

subject to Eq. (34), where Q € %% is a PSD symmetric weighting
matrix.

V. Numerical Example

A numerical exampleis now given, which servesto both illustrate
the SMC design process and to verify the analytical results already
developed. A general design procedure is identified and then im-
plemented in order to arrive at an SMC design for a anisotropic
cantilevered cylindrical semisection in which the damping factors
of the first three modes are chosen optimally. A parameter optimiza-
tion process is used to derive a suitable set of MPFs and a control
law. Implementationis realized via a single SSMA. The SMC design
is then validated through numerical simulation.

Step 1 Structural Design: The first step in the design processis
to determine the structural design of the composite shell so as to sat-
isfy any mechanical requirements. A cantilevered cylindrical panel
is considered, whose geometry is given in Fig. 2. The panelitselfis,
in essence, a semisection that spans 60 deg of a cylinder with a fixed
radius R such that the (@, dimension) width is 0.4 m. The section
length is 0.6 m. Three mechanically isotropic and piezoelectrically
biaxial PVDF layers are bonded to each surface of a double-layered
graphite-epoxycomposite substrate, and the layers are sequentially
numbered from top to bottom. Relevantmaterial propertiesare given
in Tables 2 and 3.

Step 2 Model Generation: Using the ANSYS finite element
modeling (FEM) package,'® a discrete model of the passive system
was developedbased on a 169-node finite element representationof

Table2 Material properties for example structure

Property PVDF G-epoxy
Ei1,Pa 2.00 x 107 14.5 x 10°
Es,Pa 2.00 x 107 9.60 x 10°
G2, Pa 1.42x10° 4.10 x 10°
V12 0.3 0.3

0, kg/m3 1780 1551
(¢3,)9 =0°, Coul/m? 60 x 10° —
(¢3,)6 0°, Coul/m? 20x 103 E—

Table 3 Sublaminas skew angles and thicknesses

PVDF (top) G-epoxy (middle) PVDF (bottom)
Layer 1 2 3 4 5 6 7 8
Skew angle,deg 60 0 —60 45 —45 —-60 0 60
Thickness, um 28 28 28 140 140 28 28 28

Table 4 Passive and active system damping coefficients
and natural frequencies

Open loop Ideal closed loop Actual closed loop
Mode Em Wy rad/s Em W rad/s Em [/ rad/s
1 0.00748 2993  0.40848  39.13  0.40215 39.14
2 0.01473  58.91 0.29581  51.20  0.29264 50.67
3 0.03583 1433 0.29315 126.1 0.28973 127.3
4 0.03594 145.8  0.03594 1458  0.03653 146.2
5 0.03898 1559  0.03898 1559  0.03821 156.9
6 0.04395 175.8  0.04395 175.8  0.04474 173.7
7 0.06420  256.8  0.06420 256.8  0.06310 255.3
8 0.06437  261.5 0.06437 261.5 0.06458 259.7
9 0.06836 2734  0.06836  273.4  0.06953 274.8
10 0.08987  359.5 0.08987  359.5  0.09126 363.5

C3

disturbance,
d(t)

Fig.2 Cylindrical panel example problem geometry.

the cylindrical panel. Mass, damping, and stiffness matrices were
thus obtained. The first three mode shapes are shown in Fig. 3 (curvi-
linear coordinates). The first ten open-loop natural frequencies and
damping ratios are listed in Table 4.

Step 3 Performance Objective: The structureis excitedinitially
through a disturbance force d(¢) acting at a free corner, as shown
in Fig. 2. In this example problem the performance objective is to
increase damping in the first three modes via maximization of the
objective functional J = min({;w;), for j=(1, 2, 3). Expressing
the reduced system in the form of Eq. (34) (where A € W>%) and
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Fig.3 First three structural mode shapes in curvilinear coordinate frame (deflections are scaled). Starred boundary indicates a clamped condition.
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Fig.4 System root locus for different values of G using optimal MPF
values.

maximizing J with respectto the MPFs via a (self-written) steepest
ascent algorithm, the optimal values

(a1, @2, a3, G) = (0.002971,0.000825, 0.0002415, 3.102)

were obtained. Figure 4 describes how the pole locations of the
open-loop system [Eq. (19)] are moved in the complex plane when
the optimal MPF values are assumed and the feedback gain G is
allowed to vary. The closed-loop pole locations at the optimal gain
value are marked in the figure with a plus (4) sign. Open- and
closed-loopdamping coefficients and natural frequencies,which are
determined directly from the obtained (complex) pole locations, are
listed in Table 4 as the ideal values. Note that it was unnecessary to
bound the controlinput through the introductionof a control-related
term in the performanceindex (i.e., add to the objective functional a
term of the form fooo o Va2 dt, where ry > 0) because the closed-loop
poles naturally migrate to the nonoptimal locations of the open-loop
zeros as the control gain is increased to infinity.

Step 4  Piezo-Field Functions: Having determined the targeted
subsystem mode shapes and MPFs, the piezoelectricfield functions
are then determined via Eq. (11). Based on the optimal MPF values
and data given in Tables 2 and 3, field function descriptions for
each of the six active layers are then determined via numerically
approximatingEq. (11) and are shown in Fig. 5. The corresponding
setof scaling factors, g& for layers 1-6 were found to be 14.92,6.36,
8.13,12.31,7.07, and 9.10, respectively.

Having completedthe design process,the SSMA designand SMC
control law would normally be implemented on the actual structure.
For the sake of verifying both the SMT theory and the SMC results,
actual structural implementation is replaced here with a numerical
simulation. For convenience

C= bUI + CUIC (40)

which is one of many choices that would satisfy Eq. (6) (Z is the
identity operator). Premultiplying the equation of motion [Eq. (3)]
by phA; A, and recalling that V*(¢) = g(’j V,(t) such that

,Ol’lAlAzx” + ,OhAlAsz, + ,Ol’lAlAlex

N
- |:DT ( Zg(;e{;z\k)] V.
k=1

the FEM model (step 1) was derived by ignoring the RHS and dis-
cretizing the left-hand side of Eq. (41) so as to arrive at a numerical
model in the form

(41

Mx+Cx+Kx=0 (42)

where x is a time-dependent vector of o, o, o3 displacements at
each node location. Using the piezo-field functions just determined
and including the disturbance force d(t), the state equations are
augmented through the discretization of the RHS of Eq. (41):

Mix +Cx+ Kx = fV,+dd(t) (43)
where d is a unit vector whose only nonzero element corresponds
to the aj translation of the single node at which the disturbance
is applied (Fig. 2). Then limiting the amount of modes of interest
to 20 for the purpose of simulation, a modal transformation of the
formx = Vg was performed on Eq. (43), where V is a matrix whose
columns are the first 20 eigenvectors of Eq. (43) and ¢ is a 20-
element column vector containing the first 20 modal coordinates.
The modal system representationis then given as

§+Cq+Kqg=f,V,(t) +d,d(®) (44)
where C and K are diagonalmatrices whose respectiveelements con-
tain the terms by + coA,, and A,,. The elements of f, were observed
to be very nearly equal to «,, A, , although numerical differentiation
gave rise to marginal errors. In particular the closed-loop damping
and natural frequency data that were obtained through Eq. (44) are
listed as the actual values in Table 4. The actual values compare
favorably with the listed ideal values, which are those values that
assumedly would have been obtained if there were no numerical
errors. Note that modes 7-10, which are outside the targeted modal
subset, are virtually not influenced through active control because
the SMTs function as predicted.

To facilitate a performance analysis, a reference measurement
m(t) is added whose outputis the o3 displacementof the panel at the
point at which the disturbance is applied. Hence, upon conversion
of Eq. (44) to the form of Eq. (19), the augmented system equations

ol e e
AR

(46)
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Fig.5 Piezo-field functions for the SSMA sublaminas 4-6, relative to the curvilinear coordinate frame.
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Fig. 6 Frequency response of m(s)/d(s). Solid and dashed lines respec-
tively indicate open- and closed-loop response.

where i (t) 2 (1/ph)is(t). The required feedback law is then

V,=[-G 0] [’;}

Open- and closed-loop frequency and transient response analyses
were computed using the preceding system description. Closed-
loop damping factors and natural frequencies are listed in Table 4
as the actual values and compare well to the ideal values deter-
mined directly through the optimization procedure. The Bode mag-
nitude and phase plots of the transfer function m(s)/d(s) are given
in Fig. 6. Solid lines refer to the passive system response while
dashed lines indicate the active system response. Figure 6 shows

47

Open Loop Impuise Response: m{t)
4 T T

N

Amplitude (mm)
(=]

-2H B
4 i ]
0 5 10 15
seconds
Closed Loop Impulse Response: m(t)
4 T T T T T T T T T

Ny

Amplitude (mm)
o

1
n
T

1

. I ! 1 I ! 1 1

|
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 [eX:] 1
seconds

ob

Fig.7 System response to an impulse disturbance d(¢).

substantial closed-loop attenuation of the first three modes while all
higher-ordermodes remain essentially unaffected.In computing the
transientresponse givenin Fig. 7, aunitimpulsedisturbance was ap-
plied through d(t), and the transientresponse as measured through
the reference measurementm (t) was recorded. The closed-loopset-
tling time is substantially more rapid. The results validate the SMC
design approach as applied to curvilinear anisotropic structures.

VI. Conclusions
A general design procedure for the realization of SMC has been
presentedfor piezolaminatedanisotropicshell systems. General sta-
bility criteria were established from which stability robust SMC
approaches can be derived. Sensor-actuator collocation is not re-
quired. Several representativeobjective functions were given. Many
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stability robust SMC implementations were shown to be realizable
with only a single SMT and proportionalfeedback.The SMC design
procedure was demonstrated through a numerical example involv-
ing a composite piezolaminated anisotropic cylindrical panel. The
outcome of that procedure, a unique transducer design and accom-
panying control law derived through the parameter optimization of
a specified objective function, was then validated through numerical
simulation. Transient and frequency response analyses demonstrate
a significant improvement in system performance via the SMC ap-
proach relative to conventional methods.

Although a theory and design approach was established for us-
ing a small set of active piezolaminas in an anisotropic composite
as a basis for modal control, this paper did not attempt to explore
the practical implementation aspects of this technique. In an exper-
imental implementation of the method on an orthotropic plate.® the
authors identified factors, such as bonding and electromagneticin-
terference, that should be considered by the industry. Although the
approacheffectively harnesses the limited transductionauthority of
polyvinyledine fluoride piezo-transducers through an optimization
process, the presented theory will be equally applicable to more
advanced transducers as they become available.
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