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A general selective modal control design methodology is presented for piezolaminated anisotropic shell systems,
which uses selective modal transducers recently developed by the authors for piezo-shells in order to realize any
number of possible modal control strategies. A selective modal control design procedure, which de� nes a step-by-
step framework through which structural and control subdesign processes are effectively integrated, is speci� ed.
Several conditions that suf� ciently ensure asymptotic stability are derived and then discussed in the context of
deriving selective modal control methods, which are stability-robust to modeling and implementation errors.
Several design examples are given. A numerical example is then presented in which a stability-robust optimal
selective modal control design is developed for a cantilevered anisotropic cylindrical shell panel. Maintaining a
linear feedback law, a selective modal transducer is employed, whose design parameters were chosen so as to
optimize the system response to a given initial excitation. Frequency and transient response analyses demonstrate
a dramatic enhancement in system performance and are shown to accurately concur with theoretical predictions.

I. Introduction

W ITHIN the past decade several vibration control tech-
niques have been developed for simple beam and plate sys-

tems, which use distributed piezoelectric transducers formed from
polyvinylidine � uoride (PVDF). PVDF actuators whose spatially
varying piezoelectric � eld properties were exploited to provide for
the simultaneous control of all modes or special modal subsets in
cantilevered and simply supported beams have been designed.1;2

Miller and Hubbard developed a reciprocal sensor theory and sub-
sequently incorporated PVDF sensors and actuators into multi-
component systems in which each component itself was a smart
structural member.3 Burke and Hubbard4 developed a formulation
for the control of thin elastic (Kirchhoff–Love) isotropicplates sub-
ject to most combinations of free, clamped, or pinned boundary
conditions, in which the active elements were spatially varying bi-
axially polarized piezoelectric transducer layers. Lee5 generalized
the classical laminate plate theory to include the effect of lami-
nated piezoelectric layers and thus to provide a theoretical frame-
work for the distributed transduction of bending, torsion, shearing,
shrinking, and stretchingin � exible anisotropicplates. Miller et al.6

subsequentlyemployed Lyapunov’s second method to derive a gen-
eral active vibration suppression control design methodology for
anisotropic laminated piezoelectric plates.

The aforementioned vibration control strategies share several
common limitations. Although all of these methods reduce the vi-
bration control task to a selection of individual piezolamina � eld
functions, none offers a general method for determining those � eld
functionsso as to ensureactivevibrationsuppression.A poor choice
in piezo-� eld functions, although guaranteed not to destabilize the
structure through the active addition of vibrational energy, can ex-
tract little or no vibrational energy from the system. Furthermore,
often the designeris concernedwith suppressingvibrationsin only a
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certainmodal subset.Thegeneralizedfunctionapproachto choosing
spatial � eld functions,2;4 although adequate in certain scenarios for
guaranteeing some measure of active energy extraction from all
modes, generally will not be able to provide a means to selec-
tively target a speci� c modal subset. Finally, most methodologies
just mentioned have been exclusive to isotropic systems and are
thus incompatiblefor use with orthotropicand anisotropicaeroelas-
tic structures commonly encountered. Ultimately these limitations
would be best answered through the development of a selective
modal control (SMC) methodologyin which the designeroptimally
uses embedded piezolaminas to most effectively realize any admis-
sible performance objective. The authors recently developed such
a methodology for anisotropic plates7 and validated their results
through both numerical and experimental analyses.8

This paper extends the SMC theory to piezolaminatedanisotropic
shell systems and in particular those shell systems whose geome-
tries are deformable onto a plane. A broad class of stability robust
SMC approaches is de� ned through the identi� cation of suf� cient
conditions that ensure global asymptotic stability without requir-
ing perfectknowledgeof design parameters, structuralconstants,or
modal behavior. Speci� c SMC design examples are given, and the
design approach is illustrated via a numerical example involving a
piezolaminatedanisotropic cylindrical panel.

II. System Description
A. Geometry

Figure 1 provides a geometric de� nition of the composite shell
structure under consideration.There exist exactly N laminated lay-
ers, all of which are consideredto be piezoelectricallyactive: piezo-
electric constants relative to the nonpiezoelectric substructure are
set to zero.Material propertieswithin each lamina are assumed con-
tinuous. The electromechanical transduction effect of each lamina
can vary spatially. An orthogonal curvilinear coordinate frame is
de� ned by the unit vectors O®1, O®2, and O®3. Piezolaminas sublayers
are assumed to be transversely anisotropic, that is, monoclinic rel-
ative to the O®3 axis. The reference surface of the shell is located on
the ®3 D .®3/0 plane. The reference plane itself can be arbitrarily
located, although it is typically assigned to the structural midplane.
In orthotropicand isotropic structures,however, the reference plane
is designated as the neutral plane. De� ning the distance in the O®3

direction between any arbitrary point and the reference plane as
z, any arbitrary point .®1; ®2; ®3/ can be equivalently expressed
as [®1; ®2; .®3/0 C z]. The in� nitesimal distance ds between two
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Fig. 1 Geometry of general piezolaminated shell system.

arbitrary points .®1; ®2; ®3/ and .®1 C d®1; ®2 C d®2; ®3 C d®3/ of
a shell element in the curvilinear frame is given as9

ds2 D L2
1.d®1/

2 C L2
2.d®2/2 C d®2

3 (1)

where the Lamé coef� cients L1 and L2 are de� ned as

L1
4D A1.1 C z=R1/; L2

4D A2.1 C z=R2/ (2)

and A1 and A2 are the Lamé parameters.10 R1 and R2 are the radii
of curvaturecorrespondingto the O®1 and O®2 directions, respectively.
Lamé parameters and radii of curvature for several common struc-
tural geometries can be found in the literature.9 The discussion to
follow is limited to zero-Gaussiancurvature shells, that is, shell ge-
ometriesde� nedsuchthat1=R1 R2 D 0, which includeall geometries
that are developable onto a plane.

The O®3 locations of the surfaces of each individual lamina are
de� ned such that the bottom layer of the composite shell is assigned
the index k D 1 and the indices increase unitarily.The distance from
the reference surface to the lower, upper, and middle surfaces of
any given lamina are respectively de� ned as zk ¡ 1, zk , and z0

k . The
thicknessof any given lamina is de� ned as hk . The composite refer-
ence surface is displaced at some distance (®3/0 from the origin of
the coordinate frame. The composite thickness is de� ned as h. The
upper and lower surfaces of the composite are respectively located
at heights zN and z0 .

B. Equations of Motion
Using either � rst-order shear deformation theory (FOSDT) or

classical Kirchhoff–Love approximations, the equations of motion
of the general system described in Fig. 1 can be derived and ex-
pressed in the explicit form11

xt t C Cxt C Kx D
1

½h A1 A2
DT

Á
NX

k D 1

ek
03k V k

!
(3)

q k.t/ D
ZZ

A

1

A1 A2
.Ex/T ek

03
k dA C C k V k (4)

where the subscript t refers to partial differentiation with respect
to time and A is the surface area of the shell. Boundary conditions
are stated in Ref. 11. Equation (3) is the mechanical displacement
equation of motion, while Eq. (4) is the (de� nite) integral form
of the electrostatic charge displacement equation for this class of
materials. Equations (3) and (4) can be respectively considered as
the governing actuator and sensor equations, where x is a vector
of mechanical displacements, q k.t/ is the electrostatic charge dis-
placement relative to the kth sublaminate, and V k .t/ is the voltage
applied across the kth sublaminate.The capacitanceof the kth sub-
laminate is given as C k . The composite mass density is given as
½ , while D and E are ordinary linear differential operators de� ned
in Ref. 11. The (mass-normalized) stiffness operator K is a fourth-

order positive semide� nite and self-adjoint differential operator11

and is de� ned as

K 4D
1

½h A1 A2
DT 1

A1 A2

µ
A B

B D

¶
E (5)

where A, B, and D are matricesof constitutivemechanicalconstants
that characterize the mechanical stress-strain behavior of the com-
posite system. The damping operator C can be any operator that
commutes with K and satis� es

hÁi ; CÁ j i D c j .t/±i j ;
c j .t/ > 0 8 t > 0

c j .0/ D 0
(6)

where c j .t/ is piecewise differentiable,Á j is the j th eigenvectorof
K and ±i j is the Kronecker delta function. The electromechanical
� eld strength of each piezolamina is described mathemetically via
the product ek

03
k , where 3k D 3k .®1; ®2/ is a dimensionless and

spatially varying piezoelectric � eld distribution function and

ek
0

4D
h¡

ek
31

¢
0

¡
ek

32

¢
0

¡
ek

36

¢
0

z0
k

¡
ek

31

¢
0

z0
k

¡
ek

32

¢
0

z0
k

¡
ek

36

¢
0

iT

(7)

The piezoconstants .ek
31/0; .ek

32/0 , and .ek
36/0 are de� ned relative to

the point of maximum electromechanicaltransduction so that 3k is
normalized, that is, the maximum value of 3k is unity.

Equation (4) can be rendered into more advantageous forms by
recalling that the measured current is by de� nition the time deriva-
tive of the developed charge and that the voltage measured across
the electrode surfaces is found by dividing the developed charge
by the � lm capacitance. In practice an output measurement, which
is directly related to mechanically induced strain, is desired. Thus
the most useful sensor current or voltage relationshipsare found by
manipulating Eq. (4) such that

i k
s .t/ D i k

m.t/ ¡ C k
p

dV k

dt
D

ZZ

A

1
A1 A2

.Ext /
T ek

03k dA (8)

V k
s .t/ D V k

m .t/ ¡ V k.t/ D
1

C k
p

ZZ

A

1

A1 A2
.Ex/T ek

03
k dA (9)

where i k
m.t/ and V k

m.t/ are the kth lamina current and voltage di-
rect measurements. The consequenceof Eqs. (8) and (9) is that the
same piezoelectric layer can be used simultaneously as both a sen-
sor and as an actuator through the use of differential circuitry and
electronics.12

III. Selective Modal Transducer Theory
A. Description

In Ref. 11 a selective modal transducer (SMT) theory was pre-
sented that allows for the selective excitation and detection of each
and every mode of an anisotropic piezolaminated thin shell. SMTs
are critical to the developmentof a SMC methodology.

The following set of SMT construct conditions are imposed:
Condition C1: Exactly n transducer layers are located strictly

above the reference surface and exactly n transducers are located
strictly below the reference surface (N D 2n).

ConditionC2: There are at least six piezoelectricallyactive layers
(2n ¸ 6).

Condition C3: For each layer above the reference surface,
there exists a layer below the reference surface such that fzk D
¡zk C ngn

k D 1 .
Condition C4: Layers located at heights zk and zk C n both are

associated with the identical piezo-propertyvector ek
0.

Condition C5: The piezo-property vectors fek
0gn

k D 1 associated
with at least three layers above and likewise below the reference
surface are different.
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Adhering to the preceding conditions leads to the following
lemma, proven in Ref. 11.

Lemma 1: Let R < <6;6 be the matrix de� ned as

R
4D

NX

k D 1

ek
0

¡
ek

0

¢T
(10)

Then, if C1–C5 hold, R is invertible.
Lemma 1 is central to SMT formulations for both FOSDT

and classical Kirchhoff–Love system descriptions. Although the
FOSDT-based SMT formulation yields the same central result, for
simplicity the SMT central theorem that follows is stated for a sys-
tem whose equations of motion are governed by Kirchhoff–Love
assumptions. The following theorem was proven in Ref. 11.

Theorem 1: Consider an anisotropic (Kirchhoff–Love) thin shell
containing N piezolaminaswhose equationsof motion are given by
Eq. (3). Assume that each lamina is to function as a self-sensing
actuator such that the sensed measurement of the kth layer is given
by Eq. (8). Let the measured state is.t/ be formed from the weighted
sum of the sensed currents of each individual lamina such that

is.t/ D
NX

k D 1

gk
0 i k

s .t/

Let the time-bound control input V k .t/ of each piezolaminabe pro-
portionalto an identicaltime-dependentcontrolfunctionVa.t/, such
that V k.t/ D gk

0 Va.t/. Assume that C1-C5 are satis� ed. If the piezo-
electric � eld distributionfunctionsof each active layer are given by

3k D
1

gk
0

¡
ek

0

¢T
R¡1 1

A1 A2

µ
A B

B D

¶
E NÁ (11)

where the weighted modal sum

NÁ 4D
1X

j D 1

® j Á j

and the scaling factor g0 is de� ned as

gk
0 D max

.®1 ;®2 / 2 A


¡
ek

0

¢T
R¡1 1

A1 A2

µ
A B

B D

¶
E NÁ

 (12)

then the measured state is reduced to the form

is.t/ D ½h
1X

j D 1

® j ¸ j Pq j .t/ (13)

and the mechanical equation of motion [Eq. (3)] is reduced to the
form

Rq j C c j Pq j C ¸ j q j D ® j ¸ j Va.t/ (14)

for all integers j > 0, where® j , ¸ j , and Pq j are respectivelythe modal
participation factor, eigenvalue, and generalized modal velocity
associated with the j th eigenfunction.

B. Discussion
1. Controllability and Observability

The conditions stated in Theorem 1 are suf� cient to ensure com-
plete controllabilityand observability.There may exist simpler con-
ditions that can guarantee the same.

2. Self-Sensing Actuation
For the sake of generality, Theorem 1 assumes that each piezo-

sublaminate functions as a self-sensing actuator, yielding an SMT
that functions as a self-sensingmodal actuator (SSMA). Each layer
can also assume dedicated actuator or sensing functions so as to
yield an SMT that functionsas a dedicatedselective modal actuator
(SMA) or a selective modal sensor (SMS).11

3. Required Number of Layers
For an anisotropic structure no more than six piezolayers are

required to guarantee complete controllabilityand observabilityof
every structuralmode.11 Any advantageof employingmore than six
layers needs to be traded against fabrication complexity, increased
structuralstiffness,etc.For orthotropicstructuresno more than three
layers are required. A single layer is suf� cient to provide complete
controllabilityand observabilityof an isotropic structure.11

4. Layer Placement
The piezoelectric � eld functions and gains [Eqs. (11) and (12)]

are implicitly related to zk so that SMT performanceis insensitiveto
the distance from the neutral plane. Electrical continuity, bonding,
and other fabrication concerns are critical to the design process.
Many of these issues were investigated in a recent experimental
demonstration of the SMT design on an orthotropicplate.8

IV. Selective Modal Control
SMTs can be used to implement a numberofmodal control strate-

gies for composite shells in which both the SMT design and control
law are chosen so as to optimize or else prespecify the dynamic
response of a targeted modal subset. These SMC strategies can be
designed so as to guaranteeasymptotic stability regardlessof errors
that occur in the design process. Moreover, the freedom to arbitrar-
ily determine SMT behavior as part of the design process typically
leads to enhanced system performance and reduced burden on the
control law itself.

A. General De� nition
The system description is now further generalized to include the

possibilityof multipleSMTs. MultipleSMTs, althoughnot required
for controllability,are considered in order to provide more options
for realizinga desireddesignobjective.The independentmodalcon-
trol (IMC) approach,13 for example, would require as many SMTs
as targeted modes. Although each mode could be controlled inde-
pendently, an alternative control strategy using a single SMT to
control multiple modes can be theoretically less optimal but dras-
tically simpler to fabricate and implement. On the other hand, an
IMC implementation could be the best approach for controlling a
few modes of an isotropic structure because isotropic structures re-
quire only a single piezolayer per SMT.

Theorem 1 states that if certain conditions(C1–C5) regarding the
location, orientation, number, and electromechanical transduction
of piezosublaminasare obeyed then the SMT design process allows
for the equations of motion of an anisotropic composite shell to be
reduced to the form of Eqs. (13) and (14). Assuming that each SMT
requires exactly N piezo-sublaminas and assuming the existence
of exactly p dedicated SMAs and q dedicated SMSs, the general
mechanical equation of motion of the form

xtt C Cxt C Kx D
1

½h A1 A2
DT

Á
p ¢ NX

k D 1

ek
03k V k

!
(15)

can be reduced via Theorem 1 to the expression

Rqm C cm Pqm C ¸mqm D
pX

l D 1

®l
m ¸m V l

a .t/ (16)

while the q SMS output equations become

i n
s .t/ D ½h

1X

j D 1

¯n
j ¸ j Pq j .t/; n 2 [1; 2; : : : ; q] (17)

The driving voltage of the lth SMA .l 2 [1; : : : ; p]/ is referred to
as V l

a .t/ and the measured current of the nth SMS .n 2 [1; : : : ; q]/
as i n

s .t/. If the lth SMA is self-sensing (i.e., an SSMA), then for
some n 2 [1; : : : ; q], l D n and ¯n

j D ®l
j for all j . The mth mode is

controllable only if at least one ®l
m 6D 0 for some l 2 [1; : : : ; p] and

observable only if at least one ¯ l
m 6D 0 for some l 2 [1; : : : ; q]. Let

R be an r-dimensional subset of modes targeted for active control.
Because ®l

m ; ¯n
m D 0 8 m =2 R, then from Eqs. (16) and (17) each

excluded mode is completely decoupled from all other modes and
hence will not lead to spillover in any active control strategy based
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solely on the targeted subset. Considering only the r modes in R,
Eqs. (16) and (17) can be constructed in the form

d

dt

2

666666664

q1
:::

qr

Pq1
:::

Pqr

3

777777775

D

2

66666664

0 1
: : :

: : :

0 1

¡¸1 ¡c1
: : :

: : :

¡¸r ¡cr

3

77777775

2

666666664

q1
:::

qr

Pq1
:::

Pqr

3

777777775

C

2

666666664

0
: : :

0

®1
1¸1 ¢ ¢ ¢ ®

p
1 ¸1

:::
: : :

:::

®1
r ¸r ¢ ¢ ¢ ®

p
r ¸r

3

777777775

2

64
V 1

a
:::

V p
a

3

75

2

64
i 1
s =½h

:::

i q
s =½h

3

75 D

2

64
0 ¯1

1 ¸1 ¢ ¢ ¢ ¯1
r ¸r

: : :
:::

: : :
:::

0 ¯
q
1 ¸1 ¢ ¢ ¢ ¯

q
r ¸r

3

75

2

666666664

q1
:::

qr

Pq1
:::

Pqr

3

777777775

(18)

or in abbreviated notation

Pxa D Axa C
µ

0

®

¶
V; i D [0 ¯T ]xa (19)

where xT
a

4D [qT
a PqT

a ]T and the matrix de� nitions are obvious. For
convenience the output vector i contains the q SMS current out-
puts normalized relative to ½h. The matrices ® 2 <r;p and ¯ 2 <r;q

are de� ned such that if the kth SMA is self-sensing then the kth
columns of ® and ¯ are identical. If all SMAs are self-sensing(and
no dedicated SMSs exist), ® D ¯.

SMC is realized when the matrices ®, ¯, and a control law of
the general form V D V.i/ are established so as to best satisfy a
given performance objective. Design parameters can be chosen ei-
ther directly or else through the optimization of a general perfor-
mance index of the form J D J .xa ; ®; ¯/. In general terms, an
SMC design evolves througha step-by-stepprocess: 1) a composite
shell structuraldesign is determinedso as to satisfy any mechanical
requirements (mass, stiffness, fabrication complexity, etc.); 2) the
structure is modeled; 3) a suitable performance objective is estab-
lished and then optimized subject to Eq. (19) to determinea suitable
control law and set of modal participation factors (MPFs); and 4)
the design is assessed, and, if no further reiteration is required, the
piezo-� eld functions (3k ) for each piezolamina are determined via
Eq. (11). The design is then implemented physically.Some of these
steps are now brie� y considered.

1. Structural Design
The process of satisfyingstructuralrequirementswill necessarily

dictate the number of piezolaminas to be incorporated and hence
the number of availableSMTs. The structuremust be designedsuch
that all SMT construct conditions are satis� ed (conditionsC1–C5).
At least six laminasper anisotropicshell SMT are required,whereas
orthotropicand isotropic shells require three or fewer layers.From a
control standpoint the advantageof multiple SMTs may be small, as
many controldesignobjectivesare likely to be suf� cientlyattainable
even via a single SSMA.

2. Performance Objective
Having obtained a satisfactory representation of Eq. (19), per-

formance objectives must be determined, which will dictate the
dynamic character of the actively controlled shell as well as the
stability robustnessof the system to errors that will inevitablyoccur

during the modeling and implementation phases. The consequence
of such errors is that the � eld distribution functions (3k ), which
are ultimately implemented, will lead to an imperfect realization
of the MPFs (residing in ® and ¯) speci� ed as the outcome of the
design process. Stability robustness is therefore assessed in terms
of the sensitivity of a given design to perturbations in ® and ¯.
In the sections that immediately follow, criteria are determined to
assess the stability robustness of a given design, and a number of
representativeperformance objectives are discussed.

B. Stability Robust SMC
In this section suf� cient conditions that ensure asymptotic sta-

bility are developed and then discussed in the context of stability
robustness. Letting k 2 [1; : : : ; N ] and l 2 [1; : : : ; p], it is conve-
nient to associate each of the p ¢ N actuator laminas with unique
indices k and l. The .k; l/ piezolamina is then uniquely associated
with a driving voltage V l

k .t/, piezo-� eld function 3l
k , and piezo-

property vector .e0/
l
k . Each of the dedicated q ¢ N sensor laminas

may be likewise assigned an indexed pair .k; n/ .n 2 [1; : : : ; q]/
and associatedwith 3n

k , .e0/
n
k and a measured current i n

k .t/ given by
Eq. (8). If the .k; l/ layer is self-sensing, then the .k; l/ and .k; n/
piezolaminas are identical for some n 2 [1; : : : ; q]. The following
postulate is then introduced:

Postulate 1: Consider an anisotropic rectangular shell containing
at least p ¢ N piezolaminaswhose equations of motion are given by
Eq. (15). Then, if the entire set of control inputs fV l

k .t/gl D 1;:::; p
k D 1;:::;N

satisfy

pX

l D 1

NX

k D 1

V l
k .t/

ZZ

A

1
A1 A2

.Ext /
T .e0/

l
k 3l

k dA · 0 (20)

the closed-loop system is asymptotically stable. If the .k; l/ piezo-
lamina is self-sensing,then the closed-loopsystemis asymptotically
stable if

pX

l D 1

NX

k D 1

V l
k .t/i l

k .t/ · 0 (21)

Proof: Consider the following (positive de� nite) Lyapunov func-
tional

J D
1

2

ZZ

A

µ
½hxT

t xt C
1

A1 A2
.Ex/T 1

A1 A2

µ
A B

B D

¶
.Ex/

¶
dA

(22)

whose � rst and second terms in the integrand respectively represent
the kinetic and mechanical strain energy states as derived in Ref. 9.
The functional time derivative is then

PJ D
ZZ

A

µ
½hxT

t xtt C
1

A1 A2
.Ext /

T 1
A1 A2

µ
A B

B D

¶
.Ex/

¶
dA

(23)

Integrating by parts and applying Eq. (3), Eq. (23) can be rendered
into the form

PJ D ¡½h

ZZ

A

xT
t Cxt dA C

pX

l D 1

NX

k D 1

V l
k

£
ZZ

A

1

A1 A2
.Ext /

T .e0/l
k 3l

k dA (24)

According to the second method of Lyapunov, the system is
asymptoticallystable if PJ is negative de� nite. Realize that Eq. (24)
is synonymouswith energy � ux and that only the second term on the
right-hand side (RHS) of the equation contains the in� uence of the
piezoelectric layers. The � rst term represents the energy � ux inher-
ent to the passive system. Equation (6) establishes that the operator
C is positive de� nite; hence, the � rst term is always dissipative,and
the system will be asymptotically stable as long as the piezoelectri-
cally induced forces do not add energy to the system. Asymptotic
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stability is then contingent on the negative semide� niteness of PJp ,
where

PJp
4D

pX

l D 1

NX

k D 1

V l
k

ZZ

A

1

A1 A2
.Ext /

T .e0/l
k3

l
k dA (25)

which is the conditionstated in Eq. (20). Equation (21) then follows
directly from Eq. (8).

Postulate 1 can be used to establish a criterion for asymptotic
stability,which is centralto thedevelopmentof stabilityrobustSMC.
De� ne qa D [q1 ¢ ¢ ¢ qr ]T for use in the following theorem.

Theorem 2: Consider an anisotropic rectangular shell containing
p SMAs whose equations of motion are given by Eq. (19). Then if
V D V.Pqa/ is such that PqT

a ®V · 0, the closed-loopsystem is asymp-
totically stable.

Proof: A required SMA construct condition is that V l
k .t/ D

.g0/
l
k V l

a .t/ (Theorem 1). Hence, Eq. (25) becomes

PJp
4D

pX

l D 1

V l
a

NX

k D 1

ZZ

A

1
A1 A2

.Ext /
T .g0/

l
k .e0/l

k3
l
k dA (26)

Theorem 1 also establishes that

NX

k D 1

ZZ

A

1

A1 A2
.Ext /

T .g0/l
k.e0/

l
k 3l

k dA D ½h
rX

j D 1

®l
j ¸ j Pq j .t/

(27)

SubstitutingEq. (27) intoEq. (26) andexpressingthe result in matrix
form

PJp D ½h
¡
PqT

a ®V
¢

(28)

the negative semide� niteness of which is ensured by the condition
stated in the theorem.

Several corollaries of Theorem 2, whose proofs are readily
established in Ref. 14, are critical to design SMC approaches
that are stability robust. Denote the element by element Schur
product15 of two matrices A and B as A ± B and de� ne sgn.i/

4D
[sgn.i 1

s =½h/ ¢ ¢ ¢ sgn.i q
s =½h/]T .

Corollary 1: Consider an anisotropic rectangular shell con-
taining p D q SSMAs such that ® D ¯ in Eq. (19). Then if
V D ¡g.t/ ± sgn.i/ for any arbitrarynonnegativefunctiong.t/ 2 <p ,
the closed-loop system is asymptotically stable.

Corollary 2: Consider an anisotropic rectangular shell contain-
ing p SMAs and q SMSs whose equations of motion are given by
Eq. (19). Let V D ¡G.t/i for any arbitraryG 2 <p;q . Then if ® and ¯
are such that .®G¯T / 2 <r;r is positivesemide� nite, theclosed-loop
system is asymptotically stable.

Corollary3: Consider an anisotropicrectangularshell containing
p D q SSMAs such that ® D ¯ in Eq. (19). Let V D ¡G.t/i for any
arbitrary G 2 <p;p . Then if G is positive semide� nite, the closed-
loop system is asymptotically stable.

Corollary 4: Consider an anisotropic rectangular shell contain-
ing p SMAs and q SMSs whose equations of motion are given by
Eq. (19). Let min.p; q/ D 1 and let V D ¡G.t/i for any arbitrary
G 2 <p;q . Then if all elements of ®, ¯, and G are nonnegative, the
closed-loop system is asymptotically stable.

Theorem 2 and its corollaries establish the � ve cases given in
Table 1. Each case represents a set of constraints that can be im-
posed on the SMC objective to guarantee stability robustness. The
generality of these constraints allows for stability robust designs to

Table 1 Stability criteria case study

Case MPFs Min.p; q/ Control law Stability criterion

1 ® 6D ¯ ¸1 V D V.Pqa/ PqT
a ®V · 0

2 ® D ¯ ¸1 V D V.i/ V D ¡g.t / ± sgn.i/
3 ® 6D ¯ ¸1 V D ¡Gi ®G¯T PSD
4 ® D ¯ ¸1 V D ¡Gi G PSD
5 ® 6D ¯ 1 V D ¡Gi Elements ®; ¯; G ¸ 0

be realized without requiring the collocation of sensors and actua-
tors (i.e., SSMAs). Although self-sensingactuation is advantageous
from a theoretical standpoint, practical factors, such as frequency
and temperature dependence of the external circuit,12 may favor
noncolocated transducers.

Case 1 is the most generalof all cases listed, and it will be dif� cult
to use the associatedstability criterion to assess stability robustness.
Case 2 is easily, but not necessarily, implemented via self-sensing
actuation. When SSMAs are used, the requirement that ® D ¯ is
ensuredevenwhen modelingand implementationerrorsyield actual
MPFs that differ substantially from theoretical values. Case 3 is a
general linear method in which stability robustness depends on the
sensitivities of the eigenvalues of ®G¯T to perturbations in ® and
¯. Case 4 is a linear subset of case 2. Case 5 provides a condition
that can be veri� ed through test: each targeted mode can be excited
individuallyand the sign of each speci� c modal participationfactor
determined.

C. Representative Performance Objectives
1. Nonlinear Selective Energy Extraction

Several possible performanceobjectives are now explored. SMC
approaches based on many other performance objectives can be
found in Ref. 14. In the � rst example a nonlinear SMC method
is derived (i.e., ®, ¯, and a control law are determined) whose
objective is to explicitly de� ne the contributionof each mode to the
active energy extraction rate. Case 2 (Table 1) stability criteria are
imposed so as to ensure a stability robust design; hence, ® D ¯, and
the control law is V D ¡g.t/ ± sgn.i/. Recalling that i D ®T Pqa [via
Eq. (17)], the control law becomes

V D ¡g.t/ ± sgn.i/ D

¡

"
g1.t/ sgn

Á
rX

j D 1

®1
j ¸ j Pq j

´
¢ ¢ ¢ g p.t/ sgm

³ rX

j D 1

®
p
j ¸ j Pq j

!#T

(29)

where gl .t/ is the lth (PSD) element of g.t/. Substituting Eq. (29)
into Eq. (28), the energy � ux can be expressed in the form

PJp D ¡½h
pX

l D 1

gl .t/



rX

j D 1

®l
j ¸ j Pq j .t/


(30)

The character of the energy extraction rate can then be speci� cally
determined by the arbitrarily chosen elements of g.t/ 2 < p . Two
special cases are worth mentioning: if p D 1 and g.t/ D 1, then

PJp D ¡½h



rX

j D 1

® j ¸ j Pq j .t/


(31)

whereas if p D r , g.t/ D [1 ¢ ¢ ¢ 1]T and ®l
j D ® j ± jl , then

PJp D ¡½h
rX

j D 1

j® j ¸ j Pq j .t/j (32)

From a structural point of view, Eq. (31) is the simplest possible
case (only a single SMT is required), whereas Eq. (32) is the most
complex(oneSMT permode). NonethelessEq. (32), unlikeEq. (31),
avoids the existence of nontrivial state trajectoriesfor which PJp D 0
and hence guarantees active energy extraction along any trajectory.

2. Linear Selective Energy Extraction
When the case 3 (Table 1) scenario is obeyed so that the control

law is V D ¡Gi, then the energy � ux expression[Eq. (28)] becomes

PJp D ¡½h
£
PqT

a .®G¯/Pqa

¤
(33)

from which an energy-based linear method can be derived. The
performanceobjective is to select ®, ¯, and G.t/ so as to maximize
the energy extracted from each targeted mode relative to a speci� ed
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weighting. The control law transforms Eq. (19) into the (closed-
loop) system equation

Pxa D Aaxa ; Aa
4D A ¡

µ
0 0

0 ®G¯T

¶
(34)

IntegratingEq. (33) over the time interval t D [0; t f ], the total energy
that is actively added to the system via the piezoelectric laminas is
then

Jp D ¡½h

Z t f

0

£
PqT

a .®G¯/Pqa

¤
dt (35)

Introducingan arbitrarily speci� ed state weighting matrix NQ 2 <r;r ,
an optimal gain matrix G.t/ and set of MPFs (contained in ®; ¯)
can be determined through the maximization of the performance
index

J D
Z t f

0

£
xT

a Qxa

¤
dt; Q

4D
µ

0 0

0 NQT ®G¯ NQ

¶
(36)

subject to Eq. (34). Because the optimal solution is stable, ®G¯ is
PSD, and stability robustness is assessed through sensitivity of its
eigenvalues to perturbationsin ® and ¯. If ® D ¯ (case 4, Table 1),
then stability robustness is ensureda priori.However, enforcing that
® D ¯ will inevitably lead to an optimal value of the performance
index that will be less than the value obtained via the case 3 op-
timization (hence less effective control) because fewer parameters
are allowed in the optimization.

3. Eigenvalue Selection
Again returning to the general linear (case 3, Table 1) scenario,

the performanceobjective now considered is to � nd ®; ¯, and G so
as to move the open-loop poles as close as possible to a speci� ed
set of desired locations.De� ning

p.Aa/
4D [p1 ¢ ¢ ¢ p2r ]T (37)

p0
4D [.p1/0 ¢ ¢ ¢ . p2r /0]T (38)

where p j is the j th (possiblycomplex) pole locationof Aa and .p j /0

is the desired j th pole location, then the performanceobjective can
be realized through the minimization of

J D . p ¡ p0/T Q. p ¡ p0/ (39)

subject to Eq. (34), where Q 2 <2r;2r is a PSD symmetric weighting
matrix.

V. Numerical Example
A numericalexample is now given,which serves to both illustrate

the SMC design process and to verify the analytical results already
developed. A general design procedure is identi� ed and then im-
plemented in order to arrive at an SMC design for a anisotropic
cantilevered cylindrical semisection in which the damping factors
of the � rst three modes are chosen optimally.A parameteroptimiza-
tion process is used to derive a suitable set of MPFs and a control
law. Implementationis realizedvia a singleSSMA. The SMC design
is then validated through numerical simulation.

Step 1 StructuralDesign: The � rst step in the design process is
to determine the structuraldesign of the compositeshell so as to sat-
isfy any mechanical requirements. A cantilevered cylindrical panel
is considered,whose geometry is given in Fig. 2. The panel itself is,
in essence,a semisection that spans60 deg of a cylinderwith a � xed
radius R such that the (®2 dimension) width is 0.4 m. The section
length is 0.6 m. Three mechanically isotropic and piezoelectrically
biaxial PVDF layers are bonded to each surface of a double-layered
graphite-epoxycomposite substrate, and the layers are sequentially
numberedfrom top to bottom.Relevantmaterialpropertiesaregiven
in Tables 2 and 3.

Step 2 Model Generation: Using the ANSYS � nite element
modeling (FEM) package,16 a discrete model of the passive system
was developedbased on a 169-node� nite element representationof

Table 2 Material properties for example structure

Property PVDF G-epoxy

E11 , Pa 2:00 £ 109 14:5 £ 109

E22 , Pa 2:00 £ 109 9:60 £ 109

G12, Pa 1:42 £ 109 4:10 £ 109

º12 0.3 0.3
½, kg/m3 1780 1551
.e0

31/µ D 0± , Coul/m2 60 £ 103 ——
.e0

32/µ D 0± , Coul/m2 20 £ 103 ——

Table 3 Sublaminas skew angles and thicknesses

PVDF (top) G-epoxy (middle) PVDF (bottom)

Layer 1 2 3 4 5 6 7 8

Skew angle, deg 60 0 ¡60 45 ¡45 ¡60 0 60
Thickness, ¹m 28 28 28 140 140 28 28 28

Table 4 Passive and active system damping coef� cients
and natural frequencies

Open loop Ideal closed loop Actual closed loop

Mode ³m !m , rad/s ³m !m , rad/s ³m !m , rad/s

1 0.00748 29.93 0.40848 39.13 0.40215 39.14
2 0.01473 58.91 0.29581 51.20 0.29264 50.67
3 0.03583 143.3 0.29315 126.1 0.28973 127.3
4 0.03594 145.8 0.03594 145.8 0.03653 146.2
5 0.03898 155.9 0.03898 155.9 0.03821 156.9
6 0.04395 175.8 0.04395 175.8 0.04474 173.7
7 0.06420 256.8 0.06420 256.8 0.06310 255.3
8 0.06437 261.5 0.06437 261.5 0.06458 259.7
9 0.06836 273.4 0.06836 273.4 0.06953 274.8
10 0.08987 359.5 0.08987 359.5 0.09126 363.5

Fig. 2 Cylindrical panel example problem geometry.

the cylindrical panel. Mass, damping, and stiffness matrices were
thusobtained.The � rst threemodeshapesare shown in Fig. 3 (curvi-
linear coordinates). The � rst ten open-loop natural frequenciesand
damping ratios are listed in Table 4.

Step 3 PerformanceObjective: The structure is excited initially
through a disturbance force d.t/ acting at a free corner, as shown
in Fig. 2. In this example problem the performance objective is to
increase damping in the � rst three modes via maximization of the
objective functional J D min.³ j ! j /, for j D .1; 2; 3/. Expressing
the reduced system in the form of Eq. (34) (where A 2 <6;6 ) and
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Fig. 3 First three structural mode shapes in curvilinear coordinate frame (de� ections are scaled). Starred boundary indicates a clamped condition.

Fig. 4 System root locus for different values of G using optimal MPF
values.

maximizing J with respect to the MPFs via a (self-written) steepest
ascent algorithm, the optimal values

.®1; ®2; ®3; G/ D .0:002971; 0:000825; 0:0002415; 3:102/

were obtained. Figure 4 describes how the pole locations of the
open-loop system [Eq. (19)] are moved in the complex plane when
the optimal MPF values are assumed and the feedback gain G is
allowed to vary. The closed-loop pole locations at the optimal gain
value are marked in the � gure with a plus (C) sign. Open- and
closed-loopdampingcoef� cientsand natural frequencies,which are
determineddirectly from the obtained (complex) pole locations,are
listed in Table 4 as the ideal values. Note that it was unnecessary to
bound the control input through the introductionof a control-related
term in the performanceindex (i.e., add to the objective functionala
term of the form

R 1
0

r0V 2
a dt , where r0 > 0) because the closed-loop

polesnaturallymigrate to the nonoptimal locationsof the open-loop
zeros as the control gain is increased to in� nity.

Step 4 Piezo-Field Functions: Having determined the targeted
subsystemmode shapes and MPFs, the piezoelectric� eld functions
are then determined via Eq. (11). Based on the optimal MPF values
and data given in Tables 2 and 3, � eld function descriptions for
each of the six active layers are then determined via numerically
approximatingEq. (11) and are shown in Fig. 5. The corresponding
set of scaling factors,gk

0 for layers1–6 were found to be 14.92,6.36,
8.13, 12.31, 7.07, and 9.10, respectively.

Havingcompletedthedesignprocess,theSSMA designand SMC
control law would normally be implementedon the actual structure.
For the sake of verifying both the SMT theory and the SMC results,
actual structural implementation is replaced here with a numerical
simulation. For convenience

C D b0I C c0K (40)

which is one of many choices that would satisfy Eq. (6) (I is the
identity operator). Premultiplying the equation of motion [Eq. (3)]
by ½h A1 A2 and recalling that V k.t/ D gk

0 Va.t/ such that

½h A1 A2xtt C ½h A1 A2Cxt C ½h A1 A2Kx

D ¡

"
DT

Á
NX

k D 1

gk
0ek

03
k

!#
Va (41)

the FEM model (step 1) was derived by ignoring the RHS and dis-
cretizing the left-hand side of Eq. (41) so as to arrive at a numerical
model in the form

M Rx C C Px C K x D 0 (42)

where x is a time-dependent vector of ®1; ®2; ®3 displacements at
each node location. Using the piezo-� eld functions just determined
and including the disturbance force d.t/, the state equations are
augmented through the discretizationof the RHS of Eq. (41):

M Rx C C Px C K x D f Va C d d.t/ (43)

where d is a unit vector whose only nonzero element corresponds
to the ®3 translation of the single node at which the disturbance
is applied (Fig. 2). Then limiting the amount of modes of interest
to 20 for the purpose of simulation, a modal transformation of the
form x D Vq was performedon Eq. (43), where V is a matrix whose
columns are the � rst 20 eigenvectors of Eq. (43) and q is a 20-
element column vector containing the � rst 20 modal coordinates.
The modal system representation is then given as

Rq C NCPq C NK Pq D fq Va.t/ C dq d.t/ (44)

where NC and NK arediagonalmatriceswhose respectiveelementscon-
tain the terms b0 C c0¸m and ¸m . The elements of fq were observed
to be very nearly equal to ®m ¸m , although numerical differentiation
gave rise to marginal errors. In particular the closed-loop damping
and natural frequency data that were obtained through Eq. (44) are
listed as the actual values in Table 4. The actual values compare
favorably with the listed ideal values, which are those values that
assumedly would have been obtained if there were no numerical
errors. Note that modes 7–10, which are outside the targeted modal
subset, are virtually not in� uenced through active control because
the SMTs function as predicted.

To facilitate a performance analysis, a reference measurement
m.t/ is addedwhose output is the ®3 displacementof the panel at the
point at which the disturbance is applied. Hence, upon conversion
of Eq. (44) to the form of Eq. (19), the augmented system equations
are

d

dt

µ
q

Pq

¶
D

µ
0 1

¡ NK ¡ NC

¶ µ
q

Pq

¶
C

µ
0

fq

¶
Va C

µ
0

dq

¶
d (45)

µ
i

m

¶
D

µ
0 f T

q

dT
q 0

¶ µ
q

Pq

¶
(46)
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Fig. 5 Piezo-� eld functions for the SSMA sublaminas 4–6, relative to the curvilinear coordinate frame.

Fig. 6 Frequency response of m(s)/d(s). Solid and dashed lines respec-
tively indicate open- and closed-loop response.

where i.t/
4D .1=½h/is.t/. The required feedback law is then

Va D [¡G 0]

µ
i

m

¶
(47)

Open- and closed-loop frequency and transient response analyses
were computed using the preceding system description. Closed-
loop damping factors and natural frequencies are listed in Table 4
as the actual values and compare well to the ideal values deter-
mined directly through the optimizationprocedure.The Bode mag-
nitude and phase plots of the transfer function m.s/=d.s/ are given
in Fig. 6. Solid lines refer to the passive system response while
dashed lines indicate the active system response. Figure 6 shows

Fig. 7 System response to an impulse disturbance d(t).

substantialclosed-loopattenuationof the � rst three modes while all
higher-ordermodes remain essentiallyunaffected.In computing the
transientresponsegiven in Fig. 7, a unit impulsedisturbancewas ap-
plied through d.t/, and the transient response as measured through
the referencemeasurementm.t/ was recorded.The closed-loopset-
tling time is substantiallymore rapid. The results validate the SMC
design approach as applied to curvilinear anisotropic structures.

VI. Conclusions
A general design procedure for the realization of SMC has been

presentedfor piezolaminatedanisotropicshell systems.Generalsta-
bility criteria were established from which stability robust SMC
approaches can be derived. Sensor-actuator collocation is not re-
quired.Several representativeobjective functionswere given.Many
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stability robust SMC implementations were shown to be realizable
with only a singleSMT and proportionalfeedback.The SMC design
procedure was demonstrated through a numerical example involv-
ing a composite piezolaminated anisotropic cylindrical panel. The
outcome of that procedure, a unique transducer design and accom-
panying control law derived through the parameter optimization of
a speci� ed objectivefunction,was then validatedthroughnumerical
simulation.Transient and frequencyresponse analysesdemonstrate
a signi� cant improvement in system performance via the SMC ap-
proach relative to conventionalmethods.

Although a theory and design approach was established for us-
ing a small set of active piezolaminas in an anisotropic composite
as a basis for modal control, this paper did not attempt to explore
the practical implementation aspects of this technique. In an exper-
imental implementation of the method on an orthotropic plate,8 the
authors identi� ed factors, such as bonding and electromagnetic in-
terference, that should be considered by the industry. Although the
approacheffectivelyharnesses the limited transductionauthorityof
polyvinyledine � uoride piezo-transducers through an optimization
process, the presented theory will be equally applicable to more
advanced transducers as they become available.
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