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of Maneuvering Antisurface Missiles
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The interception of a maneuvering antisurface missile, as in ballistic missile defense and ship defense scenarios,
is formulated as an imperfect information, zero-sum, pursuit-evasion game with a state constraint imposed on the
evader. Assuming that the perfect informationversion of the game does not yield a successful result for the defense,
the solution of this game is in mixed strategies. The blind antisurface missile is programmed to perform a random
maneuver sequence. The guidance law of the interceptor missile includes a bias, which partially compensates for
the inability to achieve a satisfactory deterministic outcome and yields a nonzero probability of success. Moreover,
the defense system must launch the interceptor missile at a randomly selected initial range from the incoming
antisurface missile based on the solution of a game of timing. A new methodology is presented to assess the
probability of successful interception as a function of the parameters of the scenario.

I. Introduction

S UCCESSFUL interception of antisurface missiles attacking
high-value targets by defensive guided missiles, such as in bal-

listicmissiledefenseandshipdefensescenarios,presentsan extreme
challenge to the missile community. Tactical ballistic missiles, as
well as modern antiship missiles, � y at very high speeds, and as a
consequence their maneuvering potential is comparable to that of
the interceptors.Successful interceptionof such a threat, carrying a
lethal warhead, requires a small miss distance or even a direct hit.
Although hit-to-kill performance against missiles � ying at straight
or ballistic trajectorieswas recently demonstrated,1 new studies in-
dicate that similar guidance accuracy cannot be achieved against
highly maneuvering targets.2,3

In previous papers, the interception of antisurface missiles was
formulated as an imperfect information, zero-sum, pursuit-evasion
game with trajectory constraint imposed on the blind evader (the
antisurface missile).4¡7 For the sake of analytical simplicity and
generality, the analysis used linearized planar kinematics, simpli-
� ed dynamic models, and nondimensional variables. The solution
was based on earlier obtained results of the perfect information ver-
sions of the game. The unconstrained perfect information game8

was motivated to analyze classical antiaircraftmissile engagements
(both air-to-air and surface-to-air) and served as the basis of sev-
eral further studies,9¡12 such as extensions in the same context to
three-dimensional space and imperfect information scenarios. A
simpli� ed analysis of a ship defense scenario in a game of tim-
ing formulation was presented in Ref. 5. Detailed solution of the
perfect information game with constraintwas presented in Ref. 13.
It indicatedthat theconstraintimposedon the evaderbecomesactive
and affects the solutiononly if the interceptiontakes place at a rather
short range from the target. Because in the majority of practically
important scenarios (such as the interception of a tactical ballistic
missile with a nonconventional warhead) this is not the case, the
present paper concentrates on the unconstrainedgame model.

The objective is to extend the solutions presented in Refs. 5 and
7 by outlining a more general analysis of the imperfect information
game. After formulatingthemissilevs missile interceptionscenario,
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the solutionof the perfect informationversionof thegame (the worst
case fromthe defensepointof view) is brie� y reviewed.The analysis
of the imperfect information game is nontrivial only if the perfect
information game solution predicts that the guaranteed miss dis-
tance is larger than the lethal range of the interceptor warhead. A
new methodologyis then introducedthat shows how to compute the
probability of successful interception avoidance of the blind anti-
surface missile as a function of the scenario parameters. A detailed
analysis of the correspondinggame of timing is presented.

II. Problem Formulation
The analysis of the missile vs missile engagement is based on the

following set of underlying assumptions.
1) The designatedtarget T of the antisurfacemissile A, protected

by the defense system, is stationary.
2) The engagement starts when the interceptor missile D is

launched against A.
3) D has perfect information on A, but A has information only

on T and no information on the position of D. The parameters of
the engagement are known to all.

4) The interception of A by D must be completed within the
maximum effective range of the defense system before A enters a
prescribed safety zone, de� ned with respect to T .

5) If the interception fails, A hits and destroys T .
6) The conditions of the engagement are such that the trajectory

constraints imposed on A (in order for it to reach the target T after
avoiding interception) do not become active.

7) The engagement between the two missiles takes place in a
plane.

8) Both missiles have constant velocities V j and limited lateral
accelerations ja j j < (a j )max, j D A, D.

9) A is assumed to have instantaneous dynamics, while the dy-
namics of D is expressed by a � rst-order transfer function with the
time constant t .

10) The trajectory of both missiles can be linearized about the
initial line of sight.

Following assumptions 8 and 10, the time of the game (t f ) is
determinedby the ratio of the initialrange (de� ned along the X axis)
to the closing velocity.Based on assumptions8 and 9, the equations
of motion normal to the initial line of sight and the respective initial
conditions are written as

PyA D y1 , yA(0) D 0 (1a)

Py1 D ac
A, y1(0) D y10 (1b)

PyD D y2 , yD(0) D 0 (1c)

Py2 D y3, y2(0) D y20 (1d)
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Py3 D
ac

D ¡ y3

t
, y3(0) D 0 (1e)

where ac
A and ac

D are the commanded lateral accelerationsof A and
D, respectively,

ac
A D (aA)maxv, jvj · 1 (2)

ac
D D (aD)maxu, juj · 1 (3)

The nonzero initial conditions y10 and y20 represent the respec-
tive initial velocitycomponentsnot alignedwith the line of sight.By
assumption10, these componentsare small comparedto the compo-
nents along the line of sight. De� ning the pursuer/evader maneuver
ratio

l
DD

(aD )max

(aA)max

(4)

the normalized time-to-go

h (t )
DD (t f ¡ t )/ t , h (0)

DD h 0 (5)

and the normalized zero effort miss distance

Z ( h )
DD

(yA ¡ yD) C t h (y1 ¡ y2) ¡ t 2 y3(e¡ h C h ¡ 1)
t 2aAmax

(6)

and using these de� nitions in Eqs. (1) results in a one-dimensional
differential game

dZ

d h
D l (e¡ h C h ¡ 1)u ¡ h v, Z ( h 0) D Z0 (7)

The payoff function J of the engagement is the probability of
successful interception-avoidance. It is de� ned via a lethality func-
tion U (M), depending on the relationship between the normalized
lethal radius of the warhead M ¤ and the normalized miss distance
M and expressed as14

U (M) D
1 if M > M¤

0 if M · M¤
(8)

J D E[U (M )] (9)

Note that the de� nition of U (M), Eq. (8), is not an inherent feature
of the ensuing analysis and can be replaced with any other lethality
function.

The objective of D is to minimize this payoff function, i.e., to
maximize the probability of successful interception, whereas the
objective of A is to maximize it.

III. Perfect Information Game
In the perfect information game, the deterministic cost function

is the normalized miss distance. This game8 has only a single state
variable Z with the dynamics described by Eq. (7). The solution
is governed by a single parameter l and is characterized by the
existence of a minimal tube (see Fig. 1), which is reduced to a
single point at h D h s( l ), the nonvanishingsolution of the equation

h D l (e¡ h C h ¡ 1) (10)

For h · h s , aswellas outsidetheminimal tube, theoptimalstrategies
are bang-bang, i.e.,

u¤( h , Z ) D v¤( h , Z) D sgn(Z), Z 6D 0 (11)

and the value of the game is a unique function of the initial condi-
tions.The boundariesof theminimal tubeareobtainedby integrating
Eq. (7) usingEq. (11). The segment0 < h · h s of the h axis (Z D 0)
is a dispersal line of the evader A, where the optimal maneuver can
be either to the left or to the right, by a random selection. Inside
the minimal tube, in the region where h > h s (denoted as D0 ), the
optimal strategiesare arbitrary.All of the trajectoriesstarting in D0

Fig. 1 Solution of the unconstrained perfect information game.

reach the point (h D h s , Z D 0), and the value of the game (the
guaranteed normalized miss distance from D0) is constant:

J ¤
0 D h s ¡ ( l ¡ 1) h 2

s 2 D Ms( l ) (12)

The major conclusiondrawn from this analysis has been that if l is
suf� ciently large (l > 2, at least), then the guaranteedmiss distance
is negligibly small. In future missile vs missile engagements, such
a favorable maneuver ratio may not exist. Therefore, the results of
Ref. 8 should be reexaminedfor smaller values of l . For l < 1, D0

does not exist. In this case, the values of Ms have to be obtained by
integratingEq. (7) directly with the appropriate h 0. In Ref. 5, it was
shown that very large miss distances, unacceptable for antimissile
defense, are obtained for l ! 1.

Depending on the value of M ¤ (the nondimensional lethal radius
of the warhead of D) the saddle-point value of the miss distance
may or may not be satisfactory for an effective defense. Because in
reality A has no information on D, in most cases the actual miss
distance will be smaller, as analyzed in the next section.

IV. Imperfect Information Game Analysis
Heuristic Strategies

In this section, it is assumed from the outset that the parameters
of the scenario are such that the ratio g

DD M ¤/ Ms is unsatisfactory
for the defense (M¤ < Ms ) g < 1). Otherwise the entire analysis
is irrelevant.

The information structure of the game is asymmetrical. It is as-
sumed that the defense system has perfect information on the po-
sitions of both A and D but A knows only its own position with
respect to T . The � xed parameters of the engagement are assumed
to be known to all.

Without information on the position of D, an optimal evasion of
A, in thedeterministicsense,cannotbeperformed.Thus, A mustma-
neuver randomly using a mixed strategy, inasmuch as a straight-line
� ight or a maneuver to a � xed direction is predictable.The resultsof
the perfect information game8 indicate that for achieving the guar-
anteed miss distance Ms there must be a maximal maneuver to the
same direction for a duration of at least h s before the interception.

These observations lead to the following intuitive guidelines for
the structure of the evasive maneuvers.

1) The maneuveringsequenceshouldcover the entire interception
range of the defense system using maximum lateral acceleration.

2) The optimal sequence must employ a small number of ran-
domly timed direction changes (switches).

3) The duration of each maneuver should be of the order of h s .
In summary, the parameters of a pure evasive strategy are the

switchingdistances from T . The randomselectionof the parameters
creates the mixed strategy of A.

In this situation, the defense system, in spite of having perfect in-
formation,must select the time for launching D randomly, covering
the entire feasible domain (otherwise A, knowing the interception
range, can plan a deterministic optimal evasion). The best launch
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direction, in a perfect information scenario, is toward the predicted
collision point. In the imperfect information scenario of interest
( g < 1 and random maneuvers of A) a nonzero initial bias, based
on a presumed continuousmaneuver, may be considered.The mag-
nitudeof this bias and its directioncan be random.Thus, the defense
also applies a mixed strategy.

Solution Methodology
There existsno general solutionmethodologyfor imperfect infor-

mation games in a continuousstate space.Discretizationof the state
space does lead to a numerical algorithm, the complexity of which
becomes prohibitive as the number of partition cells increases. A
novel approach, developed � rst in Ref. 11 and extended to games
of timing in Ref. 14, is presented herein for the analysis of missile
vs missile interception scenarios with imperfect information.

Pure Strategies
The � rst stage of the solution is to de� ne a pure strategy set for

each player. One can discretize the parameter space of these pure
strategy sets and create a matrix game in which different combina-
tions of strategiesof D are mapped into different rows and different
combinationsof strategies of A are mapped into different columns.
Each element of this matrix correspondsto a unique combinationof
a pure strategypair in the discretizedgame space. The outcome of a
game scenario,played with such a combinationof pure strategies, is
the probability of a successful interception avoidance as expressed
by Eq. (9). By solving this matrix game with suf� ciently � ne dis-
cretization, one can closely approximate the optimal distribution
over the parameter space of both players, i.e., their optimal mixed
strategy.

Based on theguidelinesmentionedearlier, the pure strategystruc-
ture of the two players will consist of the following.

A will � y toward its designated target and at a selected time will
start its maneuver sequence.This sequence will consist of maximal
acceleration maneuvers with randomly timed direction changes. It
is assumed that the random duration d between any two consecutive
direction changes (switches) of the maneuver has a well-de� ned
distribution function Fd [and a corresponding probability density
function (PDF) p d , if it exists].

D will select the moment for launching the interceptor, the di-
rection of the launch, and a guidance law out of n optional biased
guidancelaws.The minimalnumberof biasedguidancelaws needed
to cover the entire reachable set (possible � nal locations) of A can
be computed. It is assumed that each biased guidance law is a mod-
i� cation of Eq. (11), derived from the perfect information game
solution by inserting a time-varying bias function fbi ( h )gn

i D 1:

ui D sgn[Z ¡ bi ( h )] (13)

The launchdirection,compatiblewith eachguidancelaw, eliminates
the argument of the sign function in Eq. (13) at h 0,

Z( h 0) D bi ( h 0) (14)

For any pair of interceptorguidance law and maneuver sequence
of the antisurface missile, there exists a game of timing,5 as de-
scribed in the sequel. In this work, it is proposed to separate the
analysis of the end game from that of the game of timing, thus
rendering the computation of the probability of a successful inter-
ception avoidancemanageable.Solving the end game and the game
of timing together would have created a very large matrix game,
requiring a brute force solution. In addition to an excessive compu-
tational burden, the insight gained by separating the two different
games would have been lost.

Stochastic Process
De� ne h m as the normalized time-to-go of the evader’s � rst ma-

neuver.For any arbitraryvaluesof h 0 and h m , Fd and bi ( h ) determine
a stochastic process whose sample functions are trajectories in the
gamespace (h , Z ). These trajectoriesare composedof segments,de-
noted as Z[ h I ( h i , Z i )], where ( h i , Z i ) is the segment starting point
in the game space and h is a running parameter along this segment.

Fig. 2 Stochastic process.

A sample trajectory is schematically depicted in Fig. 2, where it
is assumed that the slope of bi ( h ) is zero for h ¸ h s . The trajectory
starts on the switching line of D at h 0 and terminates at h D 0.
Assuming that l > 1, then for h 0 > h s (which corresponds to the
trajectorydepictedin Fig. 2), D cankeepthe trajectoryon the switch-
ing line, independentlyof the maneuvers of A, as long as h > h s . If
the maneuveringsequencestarts at h m > h s , the trajectoryleaves the
switching line of D at h s toward the direction of the last maneuver.
Otherwise, the trajectory may leave the switching line of D at h m .
This � rst maneuver (always away from the switching line of D) is
along a trajectory segment, de� ned as QZ1( h )

DD QZ [h I ( h d , bi ( h d ))],
where h d is thenormalizedtime-to-goat which the trajectorydeparts
from the switching line. Notice that this trajectory is generated by
using the strategypair ui D vi D sgn[Z ¡bi ( h )] in Eq. (7); hence, it
is parallel to an optimal trajectory of the perfect information game.

Because A maneuvers randomly, an additional switch in its con-
trol can occur at some h D g > 0. The new trajectory segment
generated by the strategy pair ui D ¡vi D sgn[Z ¡ bi ( h )] is de-
noted by OZ1( h )

DD OZ [h I ( g , QZ1( g ))]. If A switches again at h D f
(before the trajectory crosses the switching line of D), a new seg-
ment, de� ned as QZ2( h )

DD QZ [h I ( f , OZ1( f ))], is created. Whenever a
trajectory of the type OZ crosses the switching line of D, the switch
of control by D creates a trajectory segment of the type QZ .

To compute the lethality function [Eq. (8)] corresponding to a
speci� c sample of the stochasticprocess, the terminal surface of the
game ( h D 0) is divided into two parts: the winning zone of D,
characterizedby M · M ¤ (see Fig. 2), and the winning zone of A,
where M > M¤.

Any sample trajectory, passing through some switching point of
A, ( h k , Zk), ends at a randomly distributed point [h D 0, Z D
Z f ( h k , Zk )] (which constitues an implied de� nition of Z f ). If at
that switchingpoint a trajectorysegment of the type QZ is generated,
the end point of the sample trajectory is denoted by QZ f ( h k , Zk ). In
an analogous manner, OZ f ( h k , Zk ) is de� ned as the endpoint of the
sample trajectory if at the switching point a trajectory segment of
the type OZ is generated.

For any switching point (h , Z ) of A in the game space, the fol-
lowing four events are de� ned. Let A be the event that A will not
perform any additional switch until the end of the game, i.e.,

A DD f d ( h ) ¸ h g (15)

where d ( h ) is the duration of the maneuver starting at the switching
point ( h , Z ). B is de� ned as the event that A will perform at least
one additional switch until the end of the game, i.e.,

B DD (A)c (16)

Let C be the event that at the point ( h , Z ) a trajectorysegment of the
type QZ , which ends within the winning zone of A, is generated, i.e.,

C DD f U [j QZ f ( h , Z)j] D 1g (17)

Analogously,D is de� ned as

D DD f U [j OZ f ( h , Z )j] D 1g (18)
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For each such switching point ( h , Z ), two probability measures P0

and Q0 are de� ned:

P0( h , Z)
DD ProbfCg (19)

Q0( h , Z )
DD ProbfDg (20)

In the sequel, two coupled integral equations whose solution com-
prises the probabilitymeasures P0( h , Z ) and Q0( h , Z ) are derived.

Consider � rst the event C. Using the total probability theorem
yields

ProbfCg D ProbfC j AgProbfAg C ProbfC j BgProbfBg (21)

because A and B comprise a partition. Outruling concentratedmass
probability at d D h for practical reasons yields

ProbfAg D 1 ¡ Fd ( h ) (22)

Suppose that no additional switch has occurred until the end of the
game. In this case, the (deterministic) endpoint of the trajectory,
denoted by QZ A

f ( h , Z ), can be computed. Therefore,

ProbfC j Ag D U QZ A
f ( h , Z ) (23)

To compute the second term in Eq. (21), the time interval [0, h ] is
divided into N equal subintervals of the size

D h D h / N (24)

The event B can be partitioned into N disjoint subevents

B D
N

i D 1

Bi (25)

Here,Bi is theeventthat the � rst additionalswitchhasoccurredat the
point [ Ng i , QZ ( Ng i )] fhere QZ ( Ng i ) is a short notation for QZ [ Ng i I ( h , Z )]g,
where Ng i belongs to the i th subinterval, i.e.,

h ¡ iD h < Ng i · h ¡ (i ¡ 1)D h , i D 1, . . . , N (26)

Because d D h ¡ Ng i , for large N , ProbfBi g can be approximatedby

ProbfBi g ¼ p d ( h ¡ Ng i )D h (27)

Additionally, using the de� nition of Q0 [Eq. (20)] yields

ProbfC j Bi g D Q0[ Ng i , QZ ( Ng i )] (28)

Accordingly,

ProbfC j BgProbfBg ¼
NX

i D 1

Q0[ Ng i , QZ( Ng i )]pd ( h ¡ Ng i )D h (29)

Taking the limit N ! 1 and D h ! 0 and substituting Eqs. (22),
(23), and (29) in Eq. (21) yields the following integral equation:

P0( h , Z) D [1 ¡ Fd ( h )]U QZA
f ( h , Z )

C
Z h

0

pd ( h ¡ g )Q0[ g , QZ ( g )] dg (30)

The same reasoning can be used to derive the analogous integral
equation for the probability measure Q0 ,

Q0( h , Z) D [1 ¡ Fd ( h )]U OZA
f ( h , Z )

C
Z h

0

pd ( h ¡ f )P0[f , OZ( f )] df (31)

where OZ( f ) is de� ned analogously to QZ ( g ).
Notice that whenever the trajectory segments cross the switching

line of D, the Q0 and P0 under the integrals of Eqs. (30) and (31)
will be replaced by P0 and Q0 , respectively.

For any given probability distribution of the random maneuver
sequence, Fd , lethalityfunction U (jZ f j) and locationof the (biased)
switching line of D, bi ( h ), the values of P0 and Q0 at any point in
the game space can be found via a solution of the coupled integral
equations (30) and (31).

In the analysis presented so far, the functions P0( h , Z ) and
Q0( h , Z ) were computed referring to switching points of A. At
a point ( h , Z ), which is not a switching point of A, the probabil-
ity of A to reach its winning zone depends also on the normalized
time elapsed from the last switch of A, denoted by D . In this case,
the probability of success of A is denoted by PD ( h , Z) if the point
( h , Z ) is on a trajectory of the type QZ , or by QD ( h , Z) if the trajec-
tory is of the type OZ . The computation of PD ( h , Z ) and QD ( h , Z )
is discussed in Appendix A.

If h 0 > h s , D can guaranteethat all trajectorieswill go throughthe
same point, determinedby the biasedguidance law, at h s . Therefore,
in this case, which characterizes the majority of scenarios of inter-
est, the probabilities PD and QD have to be computed only at that
point.

Mapping of the Matrix Game
Any cell of the matrix game represents a combinationof a partic-

ular probability distribution of the random maneuvering sequence,
a speci� c biased guidance law, and a pair ( h 0 , h m). Each such cell
has to be associated with an adequate value of the payoff func-
tion. Based on the actual information pattern two basically different
situations can be distinguished. If D knows the direction of the
current maneuver of A, it can launch toward an appropriate biased
direction, thus enhancing its probability of success. In this case,
the payoff of the matrix cell is Q. If, however (as can be gener-
ally expected), D knows only the current position of A but has no
information on the direction of its maneuver, the selection of the
biased switching line has to be random and the resulting probability
of interception avoidance is the weighted average of the respective
values of P and Q . Examples to both cases will be given in the
sequel.

If A starts its maneuver sequenceafter the launch of D, i.e., h m ·
h 0, the valuesof P0 and Q0 canbe computedusing [h m , bi ( h m)] as the
starting point of the stochastic process, as detailed in the preceding
subsection.If, however, h m > h 0 , then the avoidanceprobabilitiesof
A, denoted in this case as NPD [h 0, bi ( h 0)] and NQD [ h 0 , bi ( h 0)] should
be computed by averaging over the random time D , elapsed from
the last switch of A until the launch, as shown in Appendix B.

V. Example: Random Telegraph Maneuver
In this section, it is assumed that the random maneuver sequence

of A is of the random telegraph type (frequently used in missile
analysis15 ). The probability distribution of this maneuver sequence
is Fd ( a ) D 1 ¡ exp(¡ k a ). The corresponding stochastic process
is characterized by the single parameter k . The average duration
between any two subsequent direction changes (switches) is 1/ k ,
and the probabilitythat there will be no switch during a given period
of time D t is equal to exp(¡ k D t ). This probability is independent
of any past event, i.e., the process has no memory. Thus, for such
a maneuver, the probabilities P and Q do not depend on the time
elapsed from the last switch of A and, therefore, P ´ P0 ´ PD and
Q ´ Q0 ´ QD . Three different interceptorguidance strategies are
considered in the sequel.

Unbiased Interceptor Guidance
Assume � rst that 1) the guidance law of the interceptor is the

one of the perfect information game,8 2) the evader acceleration is
not estimated, and 3) the initial conditions are inside the minimal
tube. In this case, the switching line of D is Z D 0. For this case,
lines of constant probabilityof interceptionavoidance are shown in
Fig. 3 for k h s

DD k s D 2.0, g D 0.54, and l D 1.3. Because both
functionsare symmetrical with respect to the switching line Z D 0,
lines of constant P are plotted in the upper-half of the game space
(Z > 0) and of constant Q in the lower-half (Z < 0). The dotted
lines represent the optimal trajectories resulting in Ms (see Fig. 1).
Because the majority of practical initial conditions are inside the
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Fig. 3 Lines of constant probability of interception avoidance without
bias, ¸s = 2.0 and ¹ = 1.3.

Fig. 4 Value of the imperfect information game without bias.

minimal tube with h > h s , i.e., in D0 , the most important result
is the value of Ps

DD P( h s , Z D 0), representing the guaranteed
probabilityof interceptionavoidance(in the example, Ps D 0.562).
This is the value of the imperfect information game, assuming that
the interceptor uses the deterministic guidance law of Ref. 8. This
valuedependson the engagementparameters l , g , and k s , as plotted
in Fig. 4 for the � xed value of l D 1.3. Two major conclusionscan
be drawn from these results.

1) The interest of A is to use a value of k s as small as possible.
Practical considerationsprohibit k D 0, and a lower bound of k s min

has to be established, such that the probability of hitting the real
trajectory constraint (which is neglected by assumption 6) will be
negligible.

2) In spite of the information advantage and even for high values
of g < 1, the probabilityof a defense failure using the deterministic
guidance law of Ref. 8 reaches very large values.

Biased Interceptor Guidance
The probability of a defense failure can be reduced by using a

bias either in the initial launch direction and/or in the guidance law.
If 0.5 < g < 1, then it is easy to � nd a bias that guarantees that
every second antisurface missile, on average, will be intercepted
and destroyed or that two interceptors � red against the same target
with different biases will guarantee the protection of a defended
site. Without being able to estimate the accelerationsof A, the bias
must be selected randomly and the guidance law must also include
a compatible time varying bias bi ( h ).

The objective of the bias in the guidance law is to achieve a
certain successful interception if A maneuvers in the correctly as-
sumed direction and to maximize its probability even if a direction

change occurs. In Ref. 14 the following time-varying biases were
selected:

b1( h ) D 1
2
h 2(1 ¡ l ) C l (e¡ h C h ¡ 1) ¡ 0.8M¤ (32a)

b2( h ) D ¡b1( h ) (32b)

where the coef� cient of 0.8 provides 20% of safety margin. The
two biased switching lines are parallel to the boundaries of the
minimal tube. They intersect twice on the h axis, at h D h ¤ and
h D h B , as can be seen in Fig. 5. The last time to select the sign
of the bias is h B ( g , l ) > h s . The existence of the bias modi� es the
avoidanceprobabilityfunctions P( h , Z ) and Q( h , Z). The valuesof
PB

DD P( h B , Z D 0) and Q B
DD Q( h B , Z D 0) are not equal to each

other (Q B < PB ). If the selection between b1 and b2 is performed
randomly with equal probabilities, the relevant payoff function
is

OP DD
PB C Q B

2
(33)

Using Estimated Evader Acceleration
If the defense system can accurately estimate the lateral acceler-

ations of A, a better result can be expected. Using the information
on the acceleration of A obtained before h B , the interceptor can
determine the direction of the correct bias by sgn(v) and reduce
the probabilityof interception avoidance to Q B . Assuming an ideal
estimation, the value of Q B is plotted in Fig. 6. It can be seen
that, for a given g , there exists a value of k s D k ¤

s that maximizes
Q B .

Fig. 5 Biased switching lines, b1(µ) and b2(µ), in the imperfect infor-
mation game.

Fig. 6 QB as a function of ¸s and ´, for ¹ = 1.3.
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A comparison between the different cases with these parameters
and with k s min D 0.3 has shown that the success probability of A
is 0.92 against a guidance without bias and 0.48 against a guidance
with a random bias (in both cases, k ¤

s D k s min D 0.3). When a
guidancewith the correct bias is used, the probabilityof success for
A is reduced to 0.39, and the optimal value of k s of the maneuver
is then in the range 1.0 < k ¤

s < 1.5.
It is of common experience that acceleration estimation is typi-

cally characterized by a slow convergence rate. Any delay in iden-
tifying the correct direction of the target acceleration increases the
probability of interception avoidance, though it will always remain
lower than in the case of a random guess. The information delay
also reduces the optimal value of k ¤

s .

VI. Game of Timing
In the preceding section an end-game analysis was carried out,

facilitating the evaluation of the probability of successful intercep-
tion avoidanceby randommaneuvering.These results show that the
probabilityof interceptionavoidance apparently assumes three dif-
ferent (constant) values, depending on the length of the end game,
thus justifying the proposed separation of the analysis into two
phases. The point of reference for the analysis presented in that
section is the time of closest approach ( h D 0), determined by the
randomly selected time of launching the interceptormissile. More-
over, the randomly selected starting time of the maneuver sequence
is assumed to be given. As mentioned earlier, the optimal selection
of the time for these actions is the solution of a game of timing,
presented in this section.

In this section, it is assumed that A uses exactly the same random
telegraph maneuver sequence with k D k ¤ (as in Sec. V) and D
applies a biased guidance law, based on an instantaneous identi� -
cation of the maneuver direction of A. For illustrativepurposes and
for the sake of simplicity, a point defense scenario is considered.

The randomly selected time of launching D determines the dura-
tion h 0 of the game. The probabilistic outcome of the end game is
jointly determined by h 0 and the random starting moment h m of the
maneuver sequence of A.

Depending on the randomly selected values of h 0 and h m , three
different outcomes are possible.

1) The maneuver sequence of A has started too late and, there-
fore, the resulting miss distance is too small (M · M ¤). Thus, the
probability of a successful interception avoidance is zero.

2) The maneuversequencehas started near the time of closest ap-
proach.The maneuvercan generatesuf� ciently largemiss distances
M > M ¤, but the time left for using the estimated maneuver for the
selectionof the appropriateguidancelaw is not suf� cient ( h B > h m ).
In this case, the probability of successful interception avoidance is
OP D ( PB C Q B )/ 2.

3) If the time suf� ces for the selection of the appropriate biased
guidance law ( h B · h m ), the probability of successful interception
avoidance is QB .

This situation can be formulated as a classicalgame of timing, as
shown in Fig. 7. The designerof the antisurfacemissile preprograms

Fig. 7 Outcome mapping in the game of timing.

the range X Am from the surface target T where the maneuver se-
quence should start. The defense system selects to launch the in-
terceptor when the antisurface missile reaches the range X A0 and
determines in this way the duration of the engagement, as well as
X f D h 0 t VD , the distance where the interception will take place.
Obviously, the time for launching D has to be selected randomly to
satisfy

Rmin · X f · Rmax (34)

where Rmin and Rmax are determined by the performance of the
interceptor missile and safety considerations. If these limits are
known also to the opponent, the extremal values for selecting X Am

will be

X Amin D Rmin (35)

and

X Amax D Rmax C t h s VA (36)

(Note that largerrangesthan X Amax will notyieldanybene� t because
interception cannot take place beyond Rmax . Starting to maneuver
earlier would only increase the detectabilityof maneuver direction.)
The three zones of different outcome are displayed in Fig. 7.

The classicalmethodology for solvinggame of timing is outlined
in Ref. 16. We will use the concept of equalizer strategiesdescribed
there.A mixedstrategyis calledan equalizerstrategyif it guarantees
the same outcome against each possible strategy of the opponent.
If one can � nd equalizer strategies for both players with the same
outcome, the game of timing is solved. The constant outcome is the
value of the game.

Because Q B < OP , the objective of A is to maximize the proba-
bility of being in the small zone where the probabilityof successful
interception avoidance is OP . Therefore, it will select X Am only in
the region X AL < X Am < X AH where such an outcome has a high
probability. It has to divide this region to the smallest number n of
subregions such that, for any selection of X f by D, at least one out
of the n possible selections of A will result in an outcome of OP . In
Fig. 8, an example of four subregions is shown.

In general, A will selectoneoutofn possibleelementsfX Am i gn
i D 1.

Let A select the subregion i with probability a i . If D selects X f 1
(see Fig. 8), the outcome for A will be

JA D a 1
OP (37)

If D selects X f 2 , the outcome will be

JA D a 1 Q B C a 2
OP (38)

and, in general, if D selects X f i , the outcome will be

JA D ( a 1 C a 2 C ¢ ¢ ¢ C a i ¡ 1)Q B C a i OP (39)

Equating all of the outcomes leads to the following recursive rela-
tionship:

a i C 1 D q a i (40)

where

q D 1 ¡ (Q B / OP) (41)

With the normalization on

a i

nX

i D 1

a i D 1)
this leads to

a 1 D
1 ¡ q

1 ¡ qn C 1
(42)

and

JA D
Q B

1 ¡ qn C 1
(43)
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Fig. 8 Selection of segments by the attacker.

This mixed strategy for A will be optimal if there is also an
equalizer strategy for D yielding the same guaranteed outcome.
Assume that D also divides the domain of the admissible launching
ranges [Eq. (34)] into a maximum number of subregions, such that,
for any selection of X Am by A, the outcome will be OP only in a
single subregion at most. Such a decomposition is shown in Fig. 9.
The probabilityof D to select any subregion j is denoted by d j (the
probability of selecting the shortest interception range being d 1 ).
In a similar manner to Eqs. (37–39), the explicit equations for an
equalizing strategy of D are

JD D d 1 OP (44)

JD D d 1 QB C d 2 OP (45)

JD D ( d 1 C d 2 C ¢ ¢ ¢ C d j ¡ 1)QB C d j
OP (46)

yielding, in an analogous manner,

d j C 1 D q d j (47)

d 1 D
1 ¡ q

1 ¡ qn C 1
D a 1 (48)

and the guaranteed outcome for D, which becomes the value of the
game, is

JD D
Q B

1 ¡ qn C 1
D JA D J ¤ (49)

The number of subregions n to be selected by both sides is the
largest integer, which is still smaller than

n0 D
Rmax ¡ Rmin

D X A

(50)

where

D X A
DD t VA( h B ¡ h ¤) (51)

If n 0 is not an integer, the subregions overlap. The width of each
subregion and the selection inside the subregions is arbitrary.

If the maneuvering sequence starts at or before X Amax [given by
Eq. (36)], the worst result that A can achieve is bounded by Q B . As
can be observed from Eq. (49), the differencebetween this outcome
and the optimal value of the game, J ¤, is rather small dependingon
the numerical values of q and n.

If, instead of the optimal mixed launch strategy [given by d ¤ D
( d 1 , . . . , d n) in Eqs. (47) and (48)], the defense selects a uniform
probability distribution, the outcome is bounded by

JU · Q B C
OP ¡ Q B

n
(52)

Fig. 9 Selection of segments by the defender.

For an illustrative numerical example, the same data as in the
precedingsectionare used. These data give n D 4, Q B ( k s D 1.5) D
0.393, and OP D 0.408. Substitution in Eq. (49) results in JA D
(1 C 6.7 £ 10¡8)Q B . Obviously, this result is very close to Q B .

Substitutingthe data in Eq. (52) yields JU · 0.396 D 1.0096Q B .
Again, this result approximates QB very closely, and thus with
the data of the given example, both players can use simple strate-
gies for the selection of their ranges (early maneuvering of A and
uniformly distributed launch time), without obtaining practically
worse results.

VII. Conclusions
A new methodology is presented for analyzing future missile vs

missile scenarios, for which a deterministic investigation predicts
an unsatisfactorydefense performance. In this case, both sides (the
designer of the antisurface missile as well as the defense system)
must use random (mixed) strategies.A generalizedapproach is out-
lined for computing the probability of successful interception (or
interception avoidance) as a function of the scenario parameters.
This approach may be applied also to other differential games with
similar information pattern. Using an example, it is demonstrated
that the computationbecomes easily manageable if the random ma-
neuvering sequence of the antisurface missile is assumed to be of a
random telegraph type.

The new methodology creates a fresh insight into the complex
nature of this very critical problem. It also generates a powerful re-
search potential to evaluatedesign and operationaltradeoffsfor cur-
rentlydesigned,aswell as futureantimissiledefensesystems.Future
analyses facilitatedby the new methodology include:detailed para-
metric analysis of future antimissile defense scenarios, sensitivity
assessment of the homing performance of currently developed de-
fense systems to antisurface missile maneuvers, and development
of ef� cient defense strategies against unpredictably maneuvering
antisurface missiles.

Appendix A: Derivation of PD and Q D

When ( h , Z ) is not a switchingpoint of A, the normalizedtime D ,
which elapsed from the last switch of A, determines the avoidance
probability measures PD ( h , Z) and QD ( h , Z ).

Let c denote the duration from the currentnormalized time-to-go
h until the next switch, i.e., c

DD d ( h C D ) ¡ D , where d ( h C D ) is
de� ned analogouslyto the de� nition implied in Eq. (15). Notice that
the de� nition of D yields Probf c · 0g D 0; hence, the probability
distribution of c is

Fc ( a ) D Probf c · a j c > 0g D Probf d · a C D j d > D g

D [1 ¡ Fd (D )]¡1[Fd ( a C D ) ¡ Fd (D )] (A1)

and, by differentiation, its PDF is

pc ( a ) D [1 ¡ Fd (D )]¡1 p d ( a C D ) (A2)
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Replacing in Eqs. (30) and (31) the functions p d and Fd by pc and
Fc , respectively,yields

PD ( h , Z ) D [1 ¡ Fd (D )]¡1 [1 ¡ Fd ( h C D )]U QZA
f ( h , Z )

C
Z h

0

pd ( h C D ¡ g )Q0[g , QZ ( g )] d g (A3)

QD ( h , Z ) D [1 ¡ Fd (D )]¡1 [1 ¡ Fd ( h C D )] U OZ A
f ( h , Z)

C
Z h

0

pd ( h C D ¡ f )P0[f , OZ ( f )] d f (A4)

In these equations, the terms QZA
f ( h , Z ), OZ A

f ( h , Z ), QZ ( g ), and OZ ( f )
have the samemeaningas in Sec. IV except that here the point ( h , Z )
(referred to in their de� nitions) is not a switching point.

Appendix B: Derivation of ÅPD and ÅQ D

Let r denote the time interval from the beginningof the maneuver
sequence to the launch moment, i.e.,

r
DD h m ¡ h 0 (B1)

The time elapsed from the last switch of A prior to the launch
moment D is a mixed random variable.To determine its probability
distribution function, the following possibilities are considered.

1) No additional switch has occurred until the launch moment,
i.e., D D r . The probability of this event is

ProbfD D r g D Probf d ¸ r g D 1 ¡ Fd ( r ) (B2)

(assuming, as before, that Probf d D r g D 0). In this case,

PD ´ Pr , QD ´ Q r (B3)

2) A switched at least one additional time prior to the launch
moment, i.e., 0 · D < r . In this case, pD , the PDF of D in the
interval 0 · D < r , can be computed using a renewal process
analysis, e.g., as discussed in Ref. 17.

Taking the expectation of PD (noting that it is a function of the
random duration D ) yields

NPD D [1 ¡ Fd ( r )]Pr [h 0, bi ( h 0)] C
Z r

0

Pb [h 0, bi ( h 0)]pD ( b ) d b

(B4)
A similar expression can be derived for NQD .
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