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A new integrated estimation and guidance design approach is presented as a computationally effective procedure
for interception of maneuvering targets. This is an adaptive approach that uses the following elements: banks of
state estimators, and guidance laws, a maneuver detector for the onset of the target’s maneuver, and a hierarchical
decision law for online selection of the estimator/guidance law pair to be employed. Simulation results confirm
that the adaptive approach leads to a reduction in the miss distance as compared with cases in which only a single

estimator/guidance law combination is available.

I.

LTHOUGH the study presented in this paper was motivated

by a future ballistic missile defense (BMD) scenario, it ad-
dresses a more general problem, namely, the interception of a ran-
domly maneuvering target by a guided missile in an environment
of noise-corrupted measurements. The missile guidance endgame
is an imperfect information terminal control problem with a very
short horizon and it requires a design approach different from the
one used in other control systems. In the classical approach, a lin-
earized model of the dynamic process about a nominal set point is
first derived. For this linearized model, the estimator and the control
law are designed independently. The separate design is based on
assuming the validity of the certainty equivalence principle (CEP)
and the associated separation theorem (ST).!

Realistic interceptor guidance, characterized (in addition to noise-
corrupted measurements) by bounded controls and saturated state
variables, as well as non-Gaussian random disturbances, does not
belong to the class of problems for which CEP and ST were proved.
Nevertheless, in the 50-yr-long history of guided missiles it has been
common practice to design estimators and missile guidance laws
separately. This convenient (but suboptimal) design approach has
been acceptable because it succeeded in satisfying the performance
requirements. The guided missiles had a substantial maneuverability
advantage over their manned aircraft targets. Miss distances on the
order of a few meters, compatible with the lethal radius (LR) of the
missile warhead and its proximity fuse, were considered admissible
due to the aircraft structural vulnerability.

This situation was changed by the threat of tactical ballistic mis-
siles (TBM), reintroduced in the 1991 Gulf War and presenting a
great challenge to the guided missile community. Successful inter-
ception of a TBM, potentially carrying an unconventional warhead,
requires a very small miss distance, or even a direct hit. This chal-
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lenge motivated intensive development of several ballistic missile
defense (BMD) systems. All of them were designed using state-of-
the-art technology, but with conventional guidance and estimation
concepts. Against nonmaneuvering targets, flying on predictable
ballistic trajectories, these systems succeeded in demonstrating hit-
to-kill performance.>~*

Re-entering TBMs, as well as modern anti-ship missiles, fly at
very high speeds and their atmospheric maneuvering potential is
comparable to that of interceptors. Because nonmaneuvering tar-
gets can be easily intercepted, the designer of such anti-surface
missiles will have to use the option of activating this inherent ma-
neuver potential, which requires only modest technical effort. If an
anti-surface missile is maneuvering in a fixed direction, or not ma-
neuvering at all, its trajectory can be considered predictable, thus
allowing successful interception. The optimal evasive maneuver in
the deterministic sense is a well-timed change (switch) in the di-
rection of the maximum available lateral acceleration. In a realistic
interception scenario, the target has no information about the inter-
ceptor’s state; therefore it has to maneuver randomly.

The interception endgame has commonly been formulated as a de-
terministic optimal control problem.’ Because target maneuvers are
independently controlled and are not known in advance, this classi-
cal approach is not adequate. The mathematical framework suitable
for the analysis of conflicts controlled by two independent agents is
to be found in the area of dynamical games.® An interception of a
maneuverable target is naturally formulated as a perfect-information
zero-sum pursuit—evasion game, where the two independent agents
(the players) are the interceptor (pursuer) and the maneuvering tar-
get (evader). The game solution provides simultaneously the missile
guidance law (the optimal pursuer strategy), the worst target maneu-
ver (the optimal evader strategy), and the resulting guaranteed miss
distance (the value of the game). This formulation dates back to the
seminal book of Rufus Isaacs.” A detailed comparison study® based
on extensive simulations demonstrated the superiority of an inter-
ceptor guidance law derived from a perfect-information differential
game formulation with bounded controls® (denoted in recent liter-
ature as DGL/1) over those obtained using deterministic optimal
control theory.

The optimality of guidance laws derived from a perfect-
information differential game formulation, as well as from deter-
ministic optimal control theory, is guaranteed only in a noise-free
environment and if the assumption of full state observation, includ-
ing the knowledge of the target acceleration, is valid. Because accel-
eration cannot be measured by another moving object, the guidance
system needs an observer, even in a noise-free environment. In the
case of noise-corrupted measurements, this task is performed by a
state estimator whose aim is also to filter out the noise. Itis acommon
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experience that even if the accuracy and the convergence rate of a
position estimator are satisfactory, the estimated acceleration is less
accurate.

Obviously, homing performance is limited by estimation accu-
racy. For linear systems, the Kalman filter'® is known to be the
optimal minimum-variance estimator, if its design is based on the
correct model of the system dynamics and both the measurement
and the process noises are zero-mean, white, and Gaussian. The
measurement noise usually has these characteristics, but the com-
monly used process noise model, representing the random target
maneuver as the output of a shaping filter driven by a zero-mean,
white, Gaussian noise,'! is an approximation at best.

Because the target maneuver dynamics are not ideal (the com-
mand is not executed instantaneously), the target acceleration is a
component of the state vector in the interception model. The dis-
turbance inputs are the random acceleration commands, which can
be discontinuous and are thought to be adequately represented by a
random jump process. Such disturbances are bounded and certainly
neither white nor Gaussian. In a recent work'? it has been shown that,
in this case, the optimal estimator is infinite-dimensional. Thus, ev-
ery computationally feasible (finite-dimensional) estimator can be,
at best, only a suboptimal approximation. Similarly, it should not
be surprising that the CEP and the ST, both involving the concept
of optimality, are not valid for the interception of randomly maneu-
vering targets. Thus, the common practice of separate design of the
estimator and guidance law is merely a suboptimal strategy.

In cases in which the CEP cannot be proved to hold, a partial
separation property was asserted,'? stating that the estimator can
be designed independent of the controller, but the derivation of the
optimal control function has to be based on the knowledge of the con-
ditional probability density function (PDF) of the estimated state. In
an earlier paper,'# it was shown, for both Gaussian and non-Gaussian
discrete-time linear systems with hard constraints on the control and
under some mild regularity assumptions, that the conditional PDF of
the state derived in the process of optimal filtering does not depend
either on the optimal control or on the cost function involved.

Unfortunately, a rigorous practical approach implementing the
idea of partial separation has not yet been developed and applied in
any known control design, including guided missiles. A pioneering
step in that direction was made in recent works,'>!'® which explic-
itly accounted for the inherent delay in estimating the acceleration
of a maneuverable target. The solution of a deterministic delayed-
information pursuit—evasion game led to a new guidance law, called
the DGL/C, which produced a significant improvement in reducing
the guaranteed miss distance, but fell short of providing fully sat-
isfactory homing accuracy. The deterministic game solution, which
neglected the stochastic effects of the noisy measurements, revealed
that the guaranteed miss distance is a monotonic function of the es-
timation delay and, thus, cannot be zero.

To achieve further improvement in guidance accuracy, both the
estimation delay and the covariance of the converged estimation
error have to be minimized. Unfortunately, these requirements are
contradictory. Small residual estimation errors can be obtained only
by low-bandwidth filters. The convergence rate of filters tracking
rapidly maneuvering targets is directly related to the maneuver de-
tection time and the estimator’s own response time. Short detection
time is achieved at the price of high false alarm rate, whereas short
response time requires large bandwidth and generates large esti-
mation errors. A single estimator is not capable of satisfying both
requirements.

In this paper, a new approach to decision-directed adaptive esti-
mation and guidance is presented. In this approach the tasks of state
estimation and detection of rapid changes in the target acceleration
command are separated. The task of the detection filter is to iden-
tify the onset of the change in the target maneuver command and to
provide its characteristics. Based on the output of the detector, de-
scribed in detail in a companion paper,'” a decision rule is activated
to select the best suited combination of state estimator and guidance
law for the ongoing interception scenario. This idea is applied to a
simplified model of an interception endgame, motivated by BMD
scenarios.

The remainder of this paper is organized as follows. In the next
section, the mathematical model of the terminal phase of the inter-
ception is presented. It includes the linearized set of the equations of
motion, their discretized versions, and the formulation of a relevant
stochastic control problem. Section III presents the major elements
of the proposed decision-directed adaptive estimation and guidance
scheme: the maneuver detector, the bank of estimators, and the bank
of guidance laws. In Section IV, the decision-directed adaptive es-
timation and guidance scheme is described. Section V presents the
results of a Monte Carlo simulation study implementing the adaptive
scheme in an interception endgame. The last section of the paper
summarizes the conclusions drawn from the study.

II. Problem Statement

An interception endgame is a short-horizon terminal control prob-
lem describing the pursuit of a maneuverable target by a guided
missile. The information structure in such scenarios is generally
imperfect, characterized by noise-corrupted measurements acquired
by the guided missile (pursuer) on the relative position of the tar-
get (evader). The evader has no information about the pursuer, but
(being aware that an interception may occur) is likely to perform
evasive maneuvers. Optimal control and differential game formu-
lations of the problem,'>'® as well as extensive simulation studies
(Ref. 19, p. 104), indicate that the most effective evasion is achieved
by well-timed directional reversal of a maximum effort maneu-
ver (also called bang-bang maneuver). In a recent paper,? it has
been shown that spiral maneuvers of the same amplitude generate
smaller miss distances if the interceptor missile uses an appropriate
estimator.

In this section, the interception endgame is first formulated in
a deterministic setting. A stochastic formulation of the problem is
subsequently presented.

A. Deterministic Endgame Dynamics

The interception endgame is essentially a three-dimensional non-
linear problem that can be linearized about a nominal collision tra-
jectory, determined by the initial line of sight and by the initial

velocity vector of the evader. The pursuer heading angle, ¢p,_,, re-
quired for collision, is determined by
sin(¢p o) = (Vg/Vp) sin(gg(0)) ey

where Vp and Vi are the pursuer and evader velocities, respectively,
and ¢£(0) is the initial heading angle of the evader. The lineariza-
tion admits a decoupling of the three-dimensional model into two
identical sets of planar equations, independently valid in two per-
pendicular planes.?! Thus, without loss of generality, a single model
of linearized planar motion can be considered.

A schematic view of the planar endgame geometry is displayed in
Fig. 1. The X -axis is aligned with the initial line of sight that serves
as the reference direction. Note that the respective velocity vectors
are generally not aligned with the reference line of sight, but they
remain close to the directions of the collision course indicated by
Eq. (1).

It is assumed that both the pursuer and the evader move with con-
stant speeds and have bounded lateral accelerations |a}| < (@)™,
Jj={E, P}.Itis further assumed that the dynamics of both players

Fig. 1 Planar engagement geometry.
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can be approximated by first-order transfer functions with time con-
stants 7p and Tz, respectively. Because gravity affects both vehicles
similarly, it is neglected in the equations of motion.

The (deterministic) nonlinear equations of the planar interception
are

xp = Vpcos(gp), xg = Vg cos(pg) (2a)
yp = Vpsin(¢p), ye = Ve sin(¢g) (2b)
qu =ap/Vp, d’E =ag/Ve (20)

ap = (aﬁ, — ap)/rp, ag = (a% - aE)/TE (2d)

where xp and yp are the positions of the pursuer along the X and Y
axes, xg and yg are the positions of the evader along the X and Y
axes, and ap and ag are the lateral accelerations of the pursuer and
evader, respectively.

To facilitate linearization, it is assumed that the heading angles,
¢p and ¢, are close to the directions of the nominal collision
course (1). Let

d T
Y ar) 3)

x=[x1 x x3 )64]Té [y
be the state vector of the linearized problem, where y £ YE — Yp is
the lateral separation between the evader and the pursuer and dy/d¢
is the relative lateral velocity. The corresponding linearized differ-
ential equations of relative planar motion normal to the reference
line and the respective initial conditions are

fi=x0  x(0)=0 (4a)
. d
Xy = X3 — X4, x0) = & (4b)
dr
t=0
=28 0) =0 (4c)
TE
=20 0)=0 (4d)
Tp

The nonzero initial condition in Eq. (4b) represents the difference be-
tween the respective initial velocity components that are not aligned
with the initial (reference) line of sight. Because of the assumption
of small deviations from the collision geometry, this difference is
small compared to the components along the line of sight. Such
linearization also yields a constant closing velocity,

Ve = Vp cos(@peo) + Vi cos(¢x(0)) &)

making it possible to compute the final time of the interception, ¢,
for a given initial distance, Xy, as

tr = Xo/ Ve (6)

Based on Eqgs. (4), the continuous, time-invariant model of the
system becomes

x(t) = Ax(t) + Biap(t) + Brai(t) @)
where
0 1 0 0
0 0 1 -1
A =
0 0 —1/tg 0
0 0 0 —1/tp
0 0
B, = 0 B, = 0 ®)
1= 0 ) 2 = 115

The cost function in the deterministic formulation, to be mini-
mized by the pursuer against any admissible evader maneuver com-
mand, is defined as the miss distance M = |x;(¢,)|. Thus, the mini-
mization problem for the pursuer is stated as

inf J, J=|X1(lf)|

¢ o pe
aj,eAq,

max

A‘,;é{aj{, eP|

as ()| < (ap)

where A5, is the set of admissible acceleration commands (control
strategies) of the pursuer and P denotes the family of piecewise
continuous functions.

The measurements performed by the pursuer comprise the range
r(¢) and the angle of the line of sight A(¢) with respect to an inertial
reference (the initial line of sight). It is assumed that the range is
perfectly measured, but that the measurement of A(z) is corrupted
by additive noise. The presence of this noise calls for a stochastic
reformulation of the problem.

ae. tel0.]) (9

B. Stochastic Formulation

The information structure of the engagement is imperfect. Be-
cause of lack of information about the state of the pursuer, the
evader cannot accurately time its required direction reversal. Be-
cause no maneuvering, or maneuvering in a fixed direction, may
lead to certain interception, the evasive strategy of the evader has
to be random. Thus, the target’s acceleration command, ag, is as-
sumed to be adequately represented by a bounded random process,
z, subject to additive abrupt changes of unknown magnitude,

as(t) ~ z(1), lz| <™ (10)

After discretization, the stochastic linear system of the terminal
interception problem becomes

x(k+1) = Fx(k) + Giap (k) + Goz(k) + w(k)
w(k) ~ N (0, 0, (k) (11a)
ym(k) = Hx (k) + n(k) (11b)

where 7 is the linearized measurement noise.

The matrices F, Gy, and G, of the discrete-time representation
of the linear system over a sampling time interval A are (Ref. 22,
p- 192)

F=o(A)=L"((sI—A™)|,

I A te(A—Vg) —1p(A—Vp)
0 1 Uy —,
“lo 0o ebm 0 (12a)
0 0 0 =B/
[Tp(A — Wp) — A?)2
4 Up— A
G, = ®(A —1)B dr = 0 (12b)
0
1 —e 2/
M—1p(A — Wp) + A2)2
A
—W, + A
G, = /0 ®(A —1)Bydr = L otz (12¢)
i 0
where
W21 —e %) ie{P E) (12d)

Using on-board sensors, the two measurements available to the
pursuer are the relative angular position, A, of the evader with respect
to an inertially fixed reference (e.g., the initial line of sight) and
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the range, r. It is assumed that the range is measured perfectly
but the measurement of the relative angular position is corrupted
by a normally distributed additive noise, p. Using the small angle
approximation, the linearized measurement of the lateral separation,
Vm 1S

Y (8) = (@) sin(A(t) + () =~ rOIE) + rE)u(t)
u(t) ~ N(0, 0%) (13)

where r(¢) denotes the distance to the evader (assumed to be mea-
sured perfectly by the pursuer) and p is the angular measurement
noise. Thus, the measurement matrix H, and the linearized mea-
surement noise 7 are

N Zrty ~N©O, (r(1)0)?)  (14)

Because of the measurement noise and the presence of random
maneuvers, the miss distance, M, becomes a random variable and
the cost function needs to be suitably redefined in a probabilistic
setting.

A realistic lethality model of the interceptor’s warhead and its
target depends on many physical parameters; thus it is very complex.
In this point-mass study, the probability of destroying the target is
determined by the simplified lethality function

H=[1 0 0 0],

1 M<R,

Fa(M. Ro) {o M > Ry (15)
where Ry is the LR of the warhead. This model assumes perfect
overall reliability of the guidance system; that is, the destruction
of the target is guaranteed whenever the value of the miss distance
does not exceed R;.

The objective of the interceptor is to destroy the target with a pre-
determined probability of success, using a warhead with the small-
est possible Ry. This probability, called single shot kill probability
(SSKP), is defined by

SSKP(Ry) = E{P;(M, Ry)} (16)

where E is the expectation operator. Notice that the expectation in
Eq. (16) is computed with respect to the PDF of the random variable
M, which is a function of the measurement noise and the random
target maneuver. Denoting by f), the PDF of M (clearly, f);(m) has
positive support), it follows that

SSKP(R;) = / Py(m, Ry) fyr(m)dm
Ry
= / fu(m)dm = Pr(M < R,) = Fy(Ry) (17)
0

where F), is the cumulative distribution function (CDF) of M. The
shape of F), is determined by the parameters of the endgame sce-
nario and the players’ controls.

Let the required SSKP in a certain scenario be «, and let the asso-
ciated LR be Ry (k) (that is, SSKP(R; (x)) = k). The corresponding
stochastic cost function is then

J' = Ri(k) (18)

For a given measurement noise distribution, this cost function is to
be minimized by the pursuer against all the disturbances created by
the evader’s feasible acceleration commands. In practical terms, the
pursuer minimizes the cost by choosing the best feasible estimation/
guidance algorithm. In this paper, the selected algorithm is based
on a decision-directed adaptive scheme.

Remark 1: Notice that, from Eq. (17), the SSKP is equal to F),,
the CDF of M. In all realistic applications, this CDF is strictly
monotonically increasing, rendering Ry («), the cost function of the
game, unique for a given «. Thus, both the pursuer and the evader
can only affect the scenario’s outcome by using their controls to
appropriately change the shape of F),. This explains the importance
of the miss distance CDF as a tool for quantitatively assessing the
outcome of a stochastic interception scenario.

III. Elements of the Integrated Adaptive Scheme

The novel decision-directed adaptive estimation and guidance
scheme relies on the interaction of three components: a maneuver
detector, a bank of state estimators, and a bank of guidance laws.
The concept of this integrated estimation and guidance scheme is
quite general in that it can accommodate the solution of many diverse
problem statements. The algorithmic implementation of the three
components, however, must be suited to the specific application
considered. In particular, in application to the terminal guidance
problem at hand, an adequate choice of algorithms is suggested
below.

A. The Maneuver Detector

The tasks of the maneuver detector are to deliver 1) a decision
concerning the occurrence of an abrupt change in the commanded
acceleration of the evader and 2) the estimated characteristics of
an abrupt change already detected. An abrupt change is a change
occurring instantaneously or, more precisely, over a single sampling
time interval. The output signals from the maneuver detector are
1) an estimate of the onset time of the evasive maneuver command,
k*, 2) an estimate of the evader’s commanded acceleration during
the evasive maneuver, EIK,IL, and 3) the state of a binary indicator &:
while an abrupt change is detected £ (k) = 1, otherwise £ (k) = 0. An
adaptive-H, generalized likelihood ratio (GLR) detector is selected
to address the task of maneuver detection.!” The adaptive-H, GLR
detector, as introduced in Ref. 17, is an extension of the original
GLR detector of Willsky and Johns?® in that it applies to linear
systems in which the value of the input variable z is unknown both
before and after an abrupt change; see Eqgs. (11).

The GLR detector employed here addresses the basic problem
of detecting changes in the mean value of an independent Gaus-
sian sequence when both the onset time and the value of the change
are unknown. The main ingredients of the GLR detector are para-
metric families of input functions, referred to as the hypotheses
{H;,i=0, ..., w} that describe the unknown input process z. Each
family H; is parameterized by the value of the change, 6;, and is
characterized by a specific, a priori selected onset time instant for
the occurrence of the change, k;. The GLR detector translates the
parametric family of input functions into parametric families of dis-
tributions for the observations. The distributions of the observations
are then estimated online as members of these families. Based on
the estimated distributions, a decision concerning the occurrence (or
absence) of a maneuver is made, and the characteristics of the ma-
neuver (onset time and value) are derived. The basic tool employed
by the GLR detector to estimate the distribution of the observations
is the log-likelihood ratio, defined as

P(yk\Hm@i)
P(V¥IHo, 60)

where 6y, 6; are parameters and )* is the o-algebra generated by
the measurements, ¥ = o {y,,(s) : 1 <s <k}. The parameter 6, de-
scribes the input signal to the system before the change. The specific
value of 6, which is assumed known by the GLR detector of Willsky
and Johns,? is only estimated by the adaptive-H, GLR detector.!’
The adopted statistical approach to such detection relies on maxi-
mizing the likelihood ratio twice, first with respect to the parameter
0;, and then with respect to the time instant of the change; that is,

L(H;, Ho) 2 log (19)

gr = max sup L(H;, Ho) (20)
0

I<i<w

where g is the decision function to be used. The precise statement
of the conditions on the probability densities under which this dou-
ble maximization can be performed can be found in Ref. 24. The
detection of a change is proclaimed whenever the value of the de-
cision function g, reaches or exceeds a given threshold, %, and is
performed as follows:

E(ky=0

=<
& > h @1)
Eky=1
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Fig. 2 Schematic flow diagram of the adaptive-H( GLR detector as applied to a linear system.

The scheme defined by Eqs. (20) and (21) belongs to the class of
sequential probability ratio tests (SPRT). For a jump-Gaussian linear
system, the value of % is chosen to satisfy

a=/ x*(u) du (22)
h

where « is an a priori selected probability of false alarm and x? de-
notes the central chi-square distribution with one degree of freedom.

The application of the GLR detector to the linear system in
Eq. (11) requires the generation of residuals that reflect the changes
of interest. The residuals are the (Gaussian distributed) innovations
of a Kalman filter (the reference Kalman filter) that is matched to
a reference realization a’% € H, so that, prior to an abrupt change,
the mean of the residuals is zero. Thus,

1d?(k, i)
sup L H,‘,H == N
e,-p ( 0) NI

(23a)

dk, )2 d(k—1,i)+ p" (k, DV ")y (), d(k;.i)=0
T, D =Tk —1,0)+p"k, OV T Opk, D), T(ki D) =0

p(k,i)= HT(k, i) (23d)
T(k,i)= Gofi(k)+ F(k — DI (k— 1, 1), T(kf.i)=0 (23¢)
Fk—1)2 F[I — K(k—1)H] (23f)

where the recursions d, J, and I are calculated for/ =k}, ..., k, the
symbols y, V, and K denote the residuals, the residual covariances,
and the Kalman gains of the reference Kalman filter, respectively,
and f; is an a priori selected member (not identically zero) of the
parametric family of input functions associated with hypothesis H;.
After a change is detected, the maximum likelihood estimates of
the onset time instant of the change and of the realization of the
change are obtained from the maximizing hypothesis as follows:

k* = Ko (24a)
2 () = a’(0) + Omas fron (1), 1=k*,....k (24b)

(™, Gimax) £ arg lm_ax sup L(H;, Hop) (24c¢)
<i<w 6[_

where a™ is the reference realization employed by the reference
Kalman filter. If an upper bound for the magnitude of the abrupt
change, zy*, is known a priori, the GLR test can incorporate this
additional information by employing only the hypotheses for which
the supremum of 6; is compatible with the bound zyi* in Eqgs. (20)

and (24c¢).

The adaptive-H, GLR detector has the important ability to mod-
ify online the reference realization a’%. Such adaptation procedure
requires the addition of yet another hypothesis H, describing a
parametric famlly of possible adaptations for a’. The adaptation
procedure for a™ is triggered whenever the hypothesis Hy is the
hypothesis maximizing Eq. (20) and £ (k) = 1. A full schematic flow
diagram of the adaptive-H, GLR detector is displayed in Fig. 2. A
detailed description of all its functional elements can be found in
Ref. 17.

B. The Bank of State Estimators

For simplicity, the bank of state estimators contains only two
members, referred to as E and E,. Both estimators have the same
general form of a Kalman filter augmented by a shaping filter. The
shaping filter is used as a finite-dimensional linear approximation
to the input random process z. (The detector provides an estimate,
ZmL, of the process z, but a shaping filter is used to estimate z inde-
pendently because the value of Zyy_ is affected by the detection delay
and by possible false detections.) The shaping filter is employed by
augmenting the system with a Wiener process acceleration model
(Ref. 22, p. 264) in which

dz ~ w, dt 25)

where w, is a zero-mean white Gaussian noise process with power
spectral density Q,; Q, is referred to as the jerk process intensity.
The approximation (25) preserves the autocorrelation function of the
random process z whenever a single evasive maneuver is expected?
and tracks a piecewise-constant input provided that the value of Q,
is chosen to be sufficiently large.”® However, it is known that the
introduction of the jerk process in the estimation process degrades
filtering of the Gaussian noise in the original system. The matrices
of the linear system employed by the Kalman filter augmented with
a Wiener process acceleration model (F G], Gz, H,and Q,) are
provided in Appendix A.

The estimators Ey and E; employ different values for the jerk
process intensity; these intensities are denoted Q.0 and Q,, re-
spectively. In this application, the values of Qo and Q,, are chosen
as follows

Quo =4[ @™ [1/] (26a)
Qa1 = (4/25)[ ™) [1/] (26b)

The larger intensity, Q .9, is obtained following the formula recom-
mended by Ref. 11 for homing guidance applications against a ma-
neuvering target. The smaller intensity, Q,, is a heuristic trade-off
between 1) optimal Gaussian noise rejection (for which Q,; should
be set to zero) and 2) providing the filter with a sufﬁaently broad
bandwidth to compensate for errors in the estimates k* and 2 Zur, (for
which Q,; must be sufficiently large). The estimator Ej is designed
to be employed when the uncertainty in the system is dominated
by the unknown evasive maneuver. The estimator E; is adequate
when the evasive maneuver has been detected and estimated (the
uncertainty in the system is then dominated by the Gaussian noise
processes).
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C. The Bank of Guidance Laws

For simplicity, the bank of guidance laws is also limited to two
members, referred to as DGL/C and DGL/1, respectively. First-order
dynamics for both the pursuer and the evader and the availability of
full state observation are assumed while deriving these laws.

The DGL/1 law was introduced in Ref. 9 as the solution to a linear,
perfect-information pursuit—evasion game with bounded controls
and with the miss distance |x; (¢;)| as the cost function of the game.
This guidance law (the optimal pursuer strategy) has the form

(a5),() = (a5)™ sgn(ZEM, (1)) 27

where (a3); is the pursuer’s commanded acceleration and ZEM,
is the zero effort miss distance (the miss distance resulting when
neither the pursuer nor the evader applies any control command until
the end of the game), computed under the assumptions previously
made. The explicit expression for ZEM; is

ZEM, (t) = x1(t) + x2(t)tyo — AZp(t) + AZE(2) (28a)
where

AZp(0) = xy()T2 (e +6p — 1) (28b)
AZp(t) 2 x3(1)T2 (e7% +6p —1) (28¢)

and where 6p S tyo/Tp and O S too/TE-

The solution of this perfect information game yields a zero guar-
anteed miss distance (the value of the game) provided that the pur-
suer can use larger lateral accelerations than the evader and has
noninferior agility (agility is defined as maximum lateral accelera-
tion divided by the time constant, that is, (a/)™/7;,i € {E, P}).

In a noise-corrupted environment that requires an estimator, the
homing performance degrades, mainly because of the inherent de-
lay in estimating the acceleration of the evader, which is needed
in Eq. (28c). This problem was somewhat alleviated by the intro-
duction of a new guidance law based on the solution of a deter-
ministic delayed-information pursuit—evasion game with bounded
controls.' In the new guidance law, denoted DGL/C (Ref. 16), an
estimation delay At was explicitly accounted for by setting

(a?)(,(f) = (ap)™ sgn(ZEM,.(t)) (29)
where

ZEM (1) = x1(t) + x2()tgo — AZp + (AZg).  (30a)

(AZp)e 2 AZ e dies/me (30b)

A deterministic analysis'> showed that, using this guidance law,
a substantial reduction of the guaranteed miss distance can be
achieved, but the guaranteed miss distance cannot be reduced to
zero. It is a monotonically increasing function of the normalized
estimation delay, 6 = Afey/Tg.

Although DGL/C substantially reduces the guaranteed miss dis-
tance, a recent paper,>’ based on a large set of simulations of noise-
corrupted scenarios, has demonstrated that if the change in the eva-
sive maneuver occurs sufficiently far away from the final time of
the interception (thus allowing the estimator to converge), DGL/1
achieves a smaller miss distance than DGL/C.

IV. Decision-Directed Adaptive Estimation
and Guidance

The decision-directed adaptive estimation and guidance scheme
is an attempt to deliver a finite-dimensional and recursive subopti-
mal solution to the stochastic dual-control problem as defined by
Eqgs. (11) and (18). The proposed scheme solves the filtering prob-
lem and the guidance problem semiseparately, in that the solution
of the filtering problem is obtained first, whereas its error character-
istics are used next in the design of the guidance law. The scheme
requires the components already described in the previous section,

Bank of a; .| Pursuer & Evader | Vn
guidance laws o systems
A A
: :
X Detector .
~ "*
y Zyok
Bank of P

state estimators

Fig. 3 Decision-directed adaptive estimation and guidance scheme.

namely, the maneuver detector, the bank of state estimators, and the
bank of guidance laws, as well as an online governor. The resulting
integrated estimation and guidance approach is adaptive and hier-
archical. The structure of the adaptive scheme is depicted in Fig. 3.
The functions performed by this scheme are described as follows:

At each time instant, the online governor selects a pair consisting
of a state estimator and a guidance law from the respective banks.
This selection is based on the current level of uncertainty about
the system, which is assessed on the basis of the output values
of the maneuver detector and available prior information about the
expected number of evasive maneuvers. For simplicity, only a single
evasive maneuver (bang—bang with a single commanded change) is
assumed to be expected.

A. The Governor

The online governor employs the value of the indicator £ to select
a state estimator and a guidance law from the banks. This selection is
motivated by the assumption of a single evasive maneuver and takes
into account an inherent delay in the estimation of the evader’s com-
manded acceleration. Whenever £(k) =0, the value of the actual
evader’s commanded acceleration is uncertain since a recent, but as
yet undetected, evasive maneuver might still have taken place. The
current estimate of the evader’s commanded acceleration is consid-
ered reliable whenever £ (k) = 1 because the already detected single
evasive maneuver is included in such an estimate. The governor thus
employs an online decision rule that selects both the state estima-
tor, E;, i €{0, 1}, and the guidance law, DGL/j, j € {C, 1}, relative
to the level of uncertainty about the current evader’s commanded
acceleration. The decision rule is hence stated as

(Eo,DGL/C) if
(E,,DGL/1)  if

Ek)y=0

(£, DGL/)) { Ehky=1 (31
B. The Reinitialization of the State Estimator

A reinitialization of the state estimator is employed to improve
the accuracy of the state estimate and is achieved by exploiting the
information contained in the detector’s estimates 5, and k*. Reini-
tialization is only necessary when the detector updates its current
estimates, which takes place only in two situations: when an evasive
maneuver is detected at time instant k (whenever £(k) =1) and in
the event of a false detection of a maneuver that is indicated by
the sequence of events: {£(k — 1) =1, £(k) = 0}. (If more than one
evasive maneuver is expected, the definition of a false detection is
more complicated.!”) The reinitialization of the state estimator at
time instant k requires correcting the value of the state estimate
x(k — 1|k — 1) and of its covariance P(k — 1|k — 1).

The reinitialization of the state estimator can be carried out in
various ways. The simplest approach to reinitialization is to reuse
the previous state estimate without corrections. The drawback is
that this simplest approach ignores any new information about the
evasive maneuver delivered by the detector and contained in the
estimates 7§, and k*. Recall that the Kalman filters employed in
the bank of state estimators provide an estimate of the process z
in the form of the component X5 of the state estimate vector. A
second approach to reinitialization is then to reset the state estimate
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so that X5 (I|1) = Zy, (D, [ = k*, ..., k. This particular approach can,
however, degrade the state estlmate due to the errors in zML and
k*. A reasonable tradeoff between these two approaches is adopted
here. The tradeoff is to constrain the state estimate only at the single
time instant &* by imposing thatx;(k* |k*) = zML(k*) Thus, the state
estimate is corrected for the abrupt change occurring precisely at k*.
Moreover, the subsequent state estimates in the interval (k* k] will
converge to zML under the action of the Kalman filter whenever the
value of 2%, is correct, or else compensate for any error that might
arise in 25 .

To define this procedure more precisely, the reinitialized state
estimate and covariance are calculated in two steps.

1) If a reinitialization of the state estimate was made at time
k — 1, then this previous reinitialization is removed by restoring the
original sequence of estimates as follows:

Xk =1k = Do = Xk — 1k — Do — E(k — DX (k — 2)oua
(32a)
Bk—1)2 - Kk —DHE)F (32b)

where §X (k — 2),14 is the correction employed by the previous reini-
tialization, the subscripts (-)o; and (-)oq denote the state estimate
without and with the previous reinitialization carried out at instant
k — 1, respectively, K (/) is the Kalman gain, and H and F are the
measurement and state transition matrices employed by the state
estimators.
If the state estimate was not previously reinitialized at time k — 1,
then
Xk =1k = Dori = X(k — 1]k — Do (33)

2) The corrected state estimate, % (k — 1|k — 1)new, is calculated
using the updated values of both k* and zy,, (k*). Let 52 be the differ-
ence between the estimates of the process z rendered by the detector
and by the state estimator; that is, 82(/) = 2 (1) — X5(/])ori- Thus,

Xk — 1k = Dpew = Xk — 1k — Dori + 8% (k — Dpew ~ (34)
where the correction term 8x (k — 1),y is obtained from
=k @& +1,... k-1
(35a)

8% (Dnew = B(D) 85I — Dpew,

8 (K )new = [0 0 820" (35b)
Eqgs. (34) and (35) are derived in Appendix B.

For simplicity, the covariance of the reinitialized state estimate is
updated in this work by

Prew(k — 11k — 1) = Poa(k — 11k — 1) (36)

This simple approach neglects the uncertainty in the estimates de-
livered by the maneuver detector. However, because the estimates
delivered by the adaptive-7{y GLR detector are consistent,!” the
approximation in Eq. (36) is valid over a sufficiently large time
interval.

V. Application to Endgame Guidance

The state estimation and homing performance statistics of the
decision-directed adaptive estimation and guidance scheme are ob-
tained from a Monte Carlo simulation of a pursuit—evasion engage-
ment between an interceptor (the pursuer) and an incoming ballistic
missile (the evader). In the simulated engagement, the dynamics of
the system is represented by the nonlinear pursuit—evasion engage-
ment described by the nonlinear set of equations (2). The simulation
parameters are listed in Table 1. The measurement frequency, f, de-
termines the sampling time interval: A =1/f. The strategy of the
evader is a bang—bang maneuver command with a single switch
over the time interval of the engagement. The initial heading angles
are zero; that is, ¢»(0) =0 and ¢ (0) =0, and the initial evader’s
command acceleration is aj; =15 g. The DGL/C law employs an
assumed information delay of Az, =0.3s.

Table 1 Simulation parameters

Parameter Value
Pursuer velocity Vp =2300 m/s
Evader velocity Vi =2700 m/s
Pursuer maximal acceleration (ap)™™=30g
Evader maximal acceleration M™=15¢g
Pursuer dynamics time constant p=02s
Evader dynamics time constant tg=02s
Initial distance X0 =20000 m
Measurement rate f=100Hz
Measurement angular noise standard deviation o =0.1 mrad
False alarm probability a=0.001

The parameters of the GLR detector are as follows. The detector
employs 70 hypotheses, w = 70, describing a possible abrupt change
in the evasive command. Each hypothesis, H;,i = {1, ..., w}, re-
quires the selection of two parameters: 1) a time instant for the
onset of the abrupt change, k¥, and 2) a normalized shape for
the abrupt change, f;. The hypotheses are selected to represent a
bang—bang evasive maneuver by choosing the values of the param-
eters as follows. The value of k; is taken in the sliding interval
ki € [k —w — 1, k — 1] such that each hypothesis H; has a different
value k7. Hence, each hypothesis assumes a different time instant
for the onset of the change. The value of f; is chosen to be a nonzero
constant value; that is, f;(t) = f., f. #0. This choice of f; means
that the evasive command acceleration has a constant value before
and after the abrupt change. An abrupt change is then defined as a
modification in the value of the evasive command. The value of the
evasive command after an abrupt change is estimated by scaling of
the normalized shape f; and by adding this rescaled f; to the value of
the evasive command before the change (the reference realization);
see Eq. (24b). The significance of this estimate is assessed by a test
of the hypotheses that involves a threshold calculated using Eq. (22)
with o =0.001 and computed to be & = 10.83. The initial reference
realization (employed by the reference Kalman filter) is ato()y=0
that is, @™ is initially mismatched with respect to the true evasive
command, z. The reference Kalman filter also employs a nonzero
process noise covariance matrix, Qy, to provide some bandwidth
to compensate for the uncertainties in the isolation of the abrupt
change and for possible nonlinearities. This discrete-time process
noise covariance matrix is computed as

A
O =/ cI)(-;)QcDT(-;) dr, QO = diag{q11, g2, q33, 0} (37)
0

where the transition matrix, &, is provided in Eq. (12a), and where
qu=1 m?/s, g =10 m?/s?, and gin=1 m?/s°. Finally, the value
of the bound for the estimate of z is set to zy7* = 100 g; this is much
larger than z™ to allow for the presence of estimation errors in the
outputs of the detector, k* and Z -

The following sections compare results obtained using the non-
adaptive and the decision-directed adaptive procedures. The state es-
timation statistics and the homing performance results are presented.

A. The State Estimation Statistics
Let tgo,, be the time-to-go at the onset time instant of the bang—
bang evasive maneuver command; that is,

tgo,, =1, — k*A (38)

The state estimation statistics of the decision-directed adaptive es-
timation scheme is compared to that of the nonadaptive E, and E|
estimators for an example with tgo,,, = 2.0 s. The comparison crite-
rion is the average estimation error. The average estimation error was
obtained by a Monte Carlo simulation that repeated the engagement
200 times; each repetition employed a different noise realization.

The absolute value of the average estimation error is depicted in
Fig. 4 for the estimates of the lateral separation, the relative lateral
velocitys, and the evader’s acceleration.The adaptive state estimator
switches between the estimators E( and E; after the detection of the
change in the evader’s maneuver command.
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Fig. 4 Absolute value of average estimation error. Upper panel: lateral
separation of the pursuer and evader; middle panel: lateral relative ve-
locity; lower panel: evader’s acceleration. Decision-directed adaptive fil-
ter: solid line; Kalman filter with low process-noise covariance (E1): dot-
ted line; Kalman filter with high process-noise covariance (Ey): dashed
line.

The interesting features in this figure are the transient responses.
The first transient response, beginning at f,, =4.0 s, is due to the
error in the initial conditions. The second transient response, be-
ginning at fy, = 2.0 s, is due to the abrupt change in the bang—bang
evasive maneuver. The E; estimator exhibits the largest average es-
timation error during the transients because of its low process noise
covariance. During transient responses, the estimates resulting from
the adaptive state estimator exhibit a smaller average estimation er-
ror and a faster convergence than the ones from the nonadaptive use
of the estimator £, and E;. Once the evasive maneuver is detected,
the adaptive estimator converges very rapidly.

B. The Homing Performance

In this section, the homing performance statistics of the integrated
adaptive estimation and guidance scheme are compared with that of
the DGL/1 law and of the DGL/C law, both using estimator Ej.

The first comparison, illustrated in Figs. 5a and 5b under the
assumption of no measurement noise, shows the time histories of
the zero-effort miss distance during a single engagement example,
where tgo,, = 0.8 s. The time histories during the entire engagement
are shown in Fig. 5a, whereas in Fig. 5b the time histories in the
interval f,, € [0, 0.9] s are plotted against a different scale.

These figures provide a clear explanation of the basic character-
istics of the three different estimation/guidance strategies. The time
histories of the nonadaptive schemes show the basic difference be-
tween the DGL/1 and DGL/C laws, both with a wide band estimator
(Eo).

By looking at the initial phase of the engagement, it is seen that
due to the estimation delay it takes a considerable time (about 1 s)
to drive the perceived zero-effort miss distance to zero using the
DGL/1 law. However, once the estimator has converged, this guid-
ance law continues to keep it zero until the evader’s commanded
acceleration changes. This change creates a very large error (17 m)
that is observed with a considerable time delay. Because of the short
remaining time left in the engagement, this error cannot be fully cor-
rected and the engagement terminates with a miss distance of more
than 1 m.

When the DGL/C guidance law is employed, the time history of
the zero effort miss distance is quite different. Because this guidance
law takes the actual target acceleration into account only partially—
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Fig. 5 Zero-effort miss distance during a single engagement with no
measurement noise, tgo,,, = 0.8. a) Entire scenario; b) zoom-in on the in-
terval [0, 0.9]. Decision-directed adaptive scheme: solid line; nonadap-
tive Kalman filter (E() with the DGL/1 law: dotted line; nonadaptive
Kalman filter (Ey) with the DGL/C law: dashed line.

see Eq. (30)—it cannot drive the actual zero-effort miss distance
to zero at any time instant. Note that in the example scenario the
normalized estimation delay (i.e., Afey/Tg) is 1.5, so only 22% of
the actual value of the target acceleration is taken into account by the
DGL/C law. When the evader’s commanded acceleration changes,
the error created by the abrupt change is smaller (only 10.5 m) due
to the “biased” initial value. Therefore, the DGL/C law is able to
achieve a miss distance of less than 1 m.

The zero-effort miss distance of the decision-directed adaptive
scheme is identical with that of the nonadaptive DGL/C law until an
abrupt change in the evader’s command is detected at 74, 2 0.55 s.
The decision-directed adaptive scheme then adapts the estimator and
the guidance law. After detection, the adaptive scheme employs the
DGL/1 law, which succeeds in driving the zero effort miss distance
to zero shortly before the end of the engagement, thus achieving
perfect interception.

In the second comparison, the homing performance statistics are
obtained by a Monte Carlo simulation consisting of 200,000 repeti-
tions of the engagement with noisy measurements. The main com-
parison criterion is R (0.95), the required LR of the interceptor for
a successful interception with SSKP =0.95.

The required lethal radii are presented as a function of tgoy,,
the time-to-go at the onset of the direction change in the evader’s
maneuver command.

Each repetition employs a different noise realization and the onset
time of the change in the evasive bang—bang maneuver command
is randomly chosen from a set of a 100 possible instants. The large
number of repetitions provides an accurate tail distribution statistics
for each of these onset times.

The value of R,(0.95) is shown in Fig. 6 as a function of the
onset time of the evader’s maneuver command reversal. The results
presented in the figure can be summarized as follows. The decision-
directed adaptive scheme requires a LR that is always smaller than or
equal to the LR required by the nonadaptive combination of E, with
the DGL/C law. As compared with the nonadaptive combination
of E, with the DGL/1 law, the decision-directed adaptive scheme
requires a smaller LR except for two small regions at the time-to-go
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Fig. 6 Ry (0.95) versus tgog, . Decision-directed adaptive scheme: solid
line; nonadaptive Kalman filter (E() with the DGL/1 law: dotted line;
nonadaptive Kalman filter (E¢) with the DGL/C law: dashed line.
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Fig. 7 Miss distance CDF. Decision-directed adaptive scheme: solid
line; nonadaptive Kalman filter (E() with the DGL/1 law: dotted line;
nonadaptive Kalman filter (E() with the DGL/C law: dashed line.

boundaries of the engagement interval, that is, at tgo, € [0, 0.2] s,
and close to the beginning of the engagement, that is, for tgo,, ~
4.0s. Thus, the engagement interval can be divided into three regions
of different characteristics.

When the onset of the maneuver change occurs in the interval
tgo,,, €10, 0.9] s, then, after detection of the change, the adaptive
scheme does not have sufficient time left to correct the pursuer’s tra-
jectory. Prior to the detection, the pursuer trajectory is determined
by the DGL/C law. Due to this lack of time after detection, the results
are not better than those corresponding to the use of the DGL/C law
alone.

When the onset of the maneuver change is such that tgog, €
[0.9,3.9] s, then, after detection of the maneuver, the adaptive
scheme has ample time to improve the state estimate (by reduc-
tion of the filter bandwidth) as well as to correct the trajectory of the
pursuer by employing the DGL/1 law. The improved state estimate
obtained from the narrow-bandwidth filter E, allows the adaptive
scheme to achieve a smaller miss distance than that of the combi-
nation of the DGL/1 law with a wide-bandwidth filter. Because a
narrow-bandwidth filter such as E; can only be used after the ma-
neuver change is detected, an online decision mechanism (such as
the governor of the adaptive scheme) is needed to decide when to
trigger its action.

When the onset of amaneuver change occurs near the beginning of
the engagement, that is, at tgo,,, ~ 4.0 s, the maneuver detector does
not have sufficient information to distinguish between the onset of
an evader’s maneuver change and the error in the initial conditions.
The onset of an evader’s maneuver change remains unnoticed by
the detector and thus the governor of the decision-directed adaptive
scheme is never activated.

The cumulative probability distribution of the miss distance, pre-
sented in Fig. 7, is obtained by assuming a uniform distribution

for the onset of the change in the evader’s maneuver command.
The figure relates the SSKP and the required LR. For example, if
SSKP = 0.8 is required, then the pursuer must have the following
lethal radii: 1) LR ~ 0.2 m for the decision-directed adaptive scheme,
2) LR ~ 0.7 m for the nonadaptive combination of E, with the
DGL/1 law, and 3) LR & 2.2 m for the nonadaptive combination of
E with the DGL/C law. In summary, the decision-directed adaptive
scheme achieves a more favorable miss distance distribution than the
combination of the DGL/1 or the DGL/C laws with a fixed estimator.

In terms of computational complexity, the adaptive algorithm re-
quires additional computations as claimed by the maneuver detector.
The adaptive-H, GLR detector with 70 hypotheses has moderate
computational requirements, similar to those of an IMM estimator
with nine models (see Ref. 28).

VI. Conclusions

The main contribution of this paper is the introduction of a new
adaptive approach to improving the homing performance of an in-
terceptor against a randomly maneuvering target. Such an improve-
ment is achieved by exploiting the information generated by a de-
tector of abrupt changes of the evasive maneuver. The resulting
decision-directed adaptive estimation and guidance algorithm can
be seen as an online optimization procedure permitting to advanta-
geously modify the state estimator and the guidance law. A signif-
icant homing improvement is achieved as demonstrated by an ex-
ample involving a simplified ballistic missile defense scenario. This
improvement is expressed in terms of a more favorable cumulative
distribution of the miss distance, which translates to a reduced value
of the required lethal radius that guarantees a prescribed probability
of target destruction.

The exposition in this paper is limited for the sake of simplicity
to a given evasive maneuver structure (although the most efficient
one) with a single change in the commanded acceleration. Nev-
ertheless, the algorithms can easily be modified to accommodate
for multiple maneuvers that could occur according to a prescribed
probability distribution. Such an extension would require a careful
modification of each of the component blocks: the detector, the bank
of estimators, and the bank of guidance laws. Specifically, whereas
the present GLR detector could efficiently deal with the detection
of the onset time of a spiraling motion, the tracking of changes in
the phase or period of such motion would require the introduction
of a large number of additional hypotheses. The concept of the in-
teractive hierarchical structure employed in the proposed approach
is, however, expected to be helpful, even in this case.

Appendix A: Matrices of the Kalman Filter
with a Wiener Process Acceleration Model

The following linear system with a Wiener process acceleration
model (discretized over a sampling time interval A) is employed by
the Kalman filter in the bank of state estimators:

e+ 1) = Fi(h) + Gas() + wk),  wk) ~N(©, 0y)
(A.1a)
ynk) = H¥() +n(k),  n~N©,0,) (Alb)
The filter’s state vector is

F=[x1 x x5 x4 xsl (A.2)

where x5 is the discretized Wiener process approximating z (see
Eq. (25)). The filter’s matrices are

1 A tpa; —tpay —1pa;+ A%)2
0 1 Teas —Tpdy —Tpaz + A
F=[0 0 e?= 0 1 —e 2 (A.3a)
0 0 0 e~A/Tr 0
0 0 0 0 1
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Tpay — A?/2
Tpas — A
G, = 0 (A.3b)
ag
0
H=[l 0 0 0 0] (A.3¢)
an ap as 0 as
ap an apn 0 asxs
Ow=0,|93 a3 a3 0 ass (A.3d)
0 0 0O 0 O
ais axs a0 ass

where Q, € R' is the jerk process intensity (see Eq. (25)), and
a=tpe E — 1+ A am=1pe P — 1+ A
az=1—e 2/ ay=1—ed/"r
apy = (1/60)[15(—30e*2A/fE + 120e™2/™ — 90) + 60A T,
+60AT (e — 1) + 40A° T} — 15A Ty + 3A7]
ap = L[ATf(e78/ — 2672/ 4 1) 4 BATI (2 — 1)
FANTEQ2 — e BT — 4N T + AY]
apy = L[t} (=3e728/7 4 12¢72/7 — 9)
+6ATE +3A T(e A — 1) + AY]
ais=1p(e M — 1) + Atp — (A?/2)1p + A*/6
ap = L[313(1 = e™22/%) 4 6AT2(1 — 2e72/7) — 6A2T; + 247
ay =3[t} — 2672 1) + 2A1p (e — 1) + A?]
ars=1p(1 — e 2/E) — Aty + A?/2
a3 = rE( — %e*M/’E + 2e~ATE %) + A

azs =1p(e 2 — 1) 4+ A, ass=A (A.3e)

Appendix B: Recursive Correction of the State Estimate

_ Let the state estimator be a Kalman filter with system matrices F,
G, and H and let x(-|-) be the state estimate. Suppose that at time
instant k, it is desired to force the past state estimate x (k*|k*), k* < k,
to adopt the value X (k*|k*)pew. The problem is to find a current state
estimate consistent with the modified history of X (-|-).

Let the subscripts (-)oq and (-)new denote the variables before
and after modification of the estimate history, respectively, and let
8x (k*|k*) be the difference:

SR K*) 2R (K K oew — K Kg K™ <k (B.1)

By linearity, the difference §x (k*|k*) is propagated forward in time
using the Kalman filter:

R+ 1) = FEAD + Gu() (B.2a)

A =2 - 1)+ KO () — HX(|I - 1)) (B.2b)

Repetitive applications of the filter Eq. (B1) to Eqgs. (B2) yield

k—k*—1
SE(klk) = ]_[ Bk —i) |82 (k* k") (B.3)
i=0
Bk—i)2 — Ktk —i)H)F (B.4)

Equation (B.3) can be rewritten in recursive form as

Sx(Ih)=8WDsxA—11—-1) I=k"+1,....k (B.)S)
Thus, by propagating and by reversing Eq. (B.1) and employing
Eq. (B.5), the current state estimate consistent with the modification
of x(k*|k*) is

L (klk)new = £(k|k)ola + 0% (k|k) (B.0)
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