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I. INTRODUCTION

The classical Kalman filter (KF) was developed
to operate on plants which are governed by vector
differential/difference equations [1, 2]. In addition,
the measured variable was assumed to be a vector.
The description of plant dynamics and related
measurement models by vector equations is a
very common one; however, there are problems in
which the variables are most naturally described
by means of matrices, like the inertia, stiffness,
and damping matrices of a given structural system.
In addition, when the matrix variables are time
varying, their dynamics are governed by matrix
differential/difference equations; this is the case, for
instance, of the direction cosine matrix (DCM) in
rigid body kinematics problems [3, p. 512], and of the
estimation-error covariance matrix in a Kalman-Bucy
filter. Consider the problem of estimating the state of
a time-varying matrix plant, where the state matrix is
observed through matrix measurements. In principle,
the tools for tackling this estimation problem are
already available. After all, one can decompose the
matrix plant into a set of vector equations and proceed
with the application of the conventional KF (see [4]
for the estimation of the 3£ 3 DCM using a 9£1
KF). One drawback of that approach, however, is
that the loss of the original structure may induce a
loss of physical insight into the vectorized estimation
algorithm. Moreover, for a high-dimensional model,
an excessive number of equations results, and it may
be difficult to determine any structure and properties
of the solution. These facts will be illustrated in the
body of the paper through various examples taken
from engineering problems.
Continuous research efforts have been conducted

to develop estimation and control algorithms that
naturally operate on matrix plant models. Considering
the Riccati differential equation of the estimation error
covariance matrix in a linear filter, the Kalman-Bucy
filter gain was computed as an optimal control gain
for that plant [5]. Special tools in matrix calculus,
such as the gradient matrix were developed for that
purpose (see [6]). Such tools were utilized to develop
estimators of matrix parameters in a mechanical
system [7]. In statistics, the “total least-squares”
method handles the problem of matrix estimation
([8, p. 595] and [9]). This is a method of data fitting,
which is based on the standard linear model (see
e.g. [10, p. 9]), and which is appropriate when
there are errors in both the observation vector and
in the observation matrix. The issue of estimating
a matrix of deterministic parameters was also
addressed in [11]—[14] using, however, a probabilistic
approach. A batch maximum-likelihood estimator of
unknown matrices of parameters is presented in [11].
The problem of obtaining a maximum-likelihood
estimate of the covariance matrix of a multivariate
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normal distribution was considered in [12]. A
matrix version of the best linear unbiased estimator
(BLUE, see [10, p. 121]) was derived in [13].
That estimator is a batch algorithm that processes
a single matrix measurement, whose rows are
assumed to be identically independently distributed.
A special recursive least-squares algorithm, called
simplified multivariate least-squares algorithm, was
derived in [15, p. 96]. For special conditions, that
algorithm features an elegant extension of the classical
least-squares algorithm to the matrix case.
The present work is a continuation of the

aforementioned research efforts. Here, we consider
a stochastic linear time-varying discrete-time plant
with a state matrix observed by matrix measurements.
The state dynamics is described by a stochastic
difference equation with an additive zero-mean
Gaussian white noise matrix. The measurement is
modeled as a linear matrix-valued function of the
state matrix with an additive zero-mean white noise
matrix. All matrices are defined over the real field. We
propose a general state matrix Kalman filter (MKF)
for this plant; that is, a KF that provides a sequence of
optimal estimates in a matrix format and performs a
covariance analysis of the estimation error. The MKF
has the statistical properties of the ordinary KF while
retaining the advantages of a compact matrix notation
by expressing the estimated matrix in terms of the
original plant parameters. Along with the development
of the MKF, several examples will be provided that
illustrate the analytical and numerical advantages of
the MKF over its vectorized version.
The structure of the paper is as follows.

Section II presents the mathematical formulation
of the estimation problem. Section III contains the
derivation of the MKF, followed by a summary of the
algorithm and a discussion of its structure. Section IV
presents several comparative examples taken from
engineering problems, which illustrate the notational
advantage of the MKF. Section V discusses the
numerical advantage of the MKF over the vectorized
filter. In Section VI, an MKF is designed in the
context of spacecraft attitude determination from
vector measurements. Conclusions are presented in
Section VII.

II. PROBLEM FORMULATION

A. Matrix State-Space Model

Consider the general linear discrete-time stochastic
dynamic system (the plant) governed by the difference
equation

Xk+1 =
¹X
r=1

£rkXkª
r
k +Wk (1)

where Xk 2 Rm£n is the matrix state variable at
time tk, £

r
k 2 Rm£m and ªr

k 2 Rn£n are “transition

matrices,” and Wk is an m£n noise matrix. The matrix
measurement equation of the matrix plant is

Yk+1 =
ºX
s=1

Hs
k+1Xk+1G

s
k+1 +Vk+1 (2)

where Yk+1 2 Rp£q is the matrix measurement of
Xk+1 at time tk+1, H

s
k+1 2 Rp£m and Gsk+1 2 Rn£q are

the observation matrices, and Vk+1 2 Rp£q is a noise
matrix. Let W denote any m£n random matrix
with generic element wij , i= 1, : : : ,m, j = 1, : : : ,n,
then the expectation of W is defined as the matrix

of the expectations of wij ; that is EfWg
¢
=[Efwijg].

Let “vec” denote the mapping from Rm£n to Rmn
which operates on a rectangular matrix by stacking
its columns one underneath the other to form a single
column-matrix [16, p. 244]. As an example, if W 2
R3£3, such that W = [wc1 wc2 wc3] then

vecW
¢
=

264wc1wc2
wc3

375 2R9: (3)

The covariance matrix of W is defined as the
covariance of its vec-transform [13]; that is

covfWg ¢=covfvecWg. Obviously, if W 2 Rm£n, then
covfWg 2Rmn£mn.
The matrix sequences Wk and Vk are assumed to

be zero-mean Gaussian white noise sequences with
covariance matrices Qk 2Rmn£mn and Rk 2 Rpq£pq,
respectively. The initial state X0 is assumed to be
Gaussian distributed with mean X̄0 and mn£mn
covariance matrix ¦0. Also, Wk, Vk, and X0 are
uncorrelated with one another.
The system equation of any linear matrix plant

is a special case of (1). This is so because the
summation operation, together with the left and right
multiplication on Xk in (1), enable to write each
element of Xk+1 as a linear combination of all the
elements of Xk (plus an additive scalar noise). The
proof, although straightforward, is lengthy, and is
omitted here for the sake of brevity. A detailed proof
is provided in [17, pp. 250—253]. In general ¹ might
be equal to (mn)2. However, certain plants may need
fewer terms in the system equation (1). Similarly, (2)
can be shown to be a standard form for a linear matrix
measurement model of the matrix plant. In the general
case º =mnpq, but certain measurement models may
include fewer terms.

B. Estimation Problem

The MKF is the unbiased minimum variance
estimator of the m£ n matrix state Xk at tk, given a
sequence of p£ q matrix observations up to tk, fYlg,
l = 1 : : :k. Let X̂k=k and X̃k=k denote, respectively,
the a posteriori state estimate and the a posteriori
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estimation error; that is, X̃k=k
¢
=Xk ¡ X̂k=k. Let Pk=k

denote the a posteriori estimation error covariance
matrix; that is Pk=k = cov(X̃kk). Then, the filtering
problem is equivalent to the following unbiased
minimization problem

min
Xk
ftr(Pk=k)g (4)

subject to (1) and (2) and to the stochastic
assumptions on the noises and the initial conditions.
When the state and the measurement are vectors, the
solution of the above minimization problem leads to
the standard KF.

III. STATE-MATRIX KALMAN FILTER

A. Derivation Approach

The approach to the filter derivation consists of
three principal steps. Note that these steps are not
the computation steps of the filter itself, which are
summarized later in this section. In the first step we
apply the vec-operator on the matrix plant described
by (1) and (2). Thus, the matrix equations (1) and
(2) are transformed into equivalent vector equations.
The result of this step is a standard state-space model,
the vec-system, where the state is an mn-dimensional
vector, and the measurement is a pq-dimensional
vector.
In the second step, KF theory is applied to the

vec-system. The time update and measurement update
stages are developed using the classical KF algorithm.
As a result, we obtain two sets of equations: the first
set computes the mn-dimensional state estimate of the
vec-system and the second set computes the mn£mn
estimation error covariance matrix.
The third step aims at retrieving the matrix form

of the original problem. This is done by applying
the inverse of the vec-operator to the KF of the
vec-system. Thus, the state estimate equations, which
are mn-dimensional vector equations, are transformed
into equivalent m£ n matrix equations. As a result,
a matrix innovations sequence is naturally defined
and the time update and measurement update stages
are expressed in terms of matrices. By definition, the
covariance computations of the vec-system and of
the matrix system are identical. Thus the covariance
analysis performed in the second step is left in its
current extended form. These manipulations yield a
state-matrix KF in a compact notation.

B. Filter Derivation

It is emphasized that the manipulations involved
in computing the various vec-transforms and their
reverse are part of the MKF derivation but not

of the filter implementation. In the following we
consistently denote the vec-transform of a matrix W
by the associated bold lower case symbol w; that is,

w
¢
=vecW. The following property of the vec-operator

will be intensively used. Let A 2Rm£n, X 2 Rn£p, and
B 2 Rp£q, and let − denote the Kronecker product,
also called direct product, or tensor product of two
matrices [16, p. 243], then [16, p. 255]

vec(AXB) = (BT−A)vecX: (5)

1) Time Update: Assume that X̂k=k and Pk=k have
been computed at time tk. Applying the vec-operator
to (1), using its linear property and (5), yields

vecXk+1 =

(
¹X
r=1

[(ªr
k )
T−£rk]

)
vecXk +vecWk (6)

which is equivalent to

xk+1 =©kxk +wk (7)

where the terms in (7) are obviously defined from
(6). Equation (7) is the process equation of the
vec-system. Applying the time update stage of the KF
[10, p. 228] to the vec-system yields

x̂k+1=k =©kx̂k=k: (8)

Thus,

vec X̂k+1=k =

(
¹X
r=1

[(ªr
k )
T−£rk]

)
vecX̂k=k (9)

X̂k+1=k =
¹X
r=1

£rkX̂k=kª
r
k (10)

where (10) is obtained using again the linear property
of the vec-operator and (5) (but this time in the
inverse direction). Notice from (10) that the a priori
estimate at time tk+1 is computed using only the
matrix-plant parameters, £rk and ª

r
k , (see (1)), and

the a posteriori matrix estimate at time tk. Recalling
that, by definition, the covariance matrix of a matrix
random variable is the covariance matrix of its
vec-transform, the time update stage for the estimation
error covariance matrix Pk=k 2 Rmn£mn is computed
from [10, p. 229]

Pk+1=k =©kPk=k©
T
k +Qk (11)

where Qk = covfWkg.
2) Measurement Update: Assume that X̂k+1=k

and Pk+1=k have been computed, and that a new
matrix measurement Yk+1 is performed at time tk+1.
Proceeding similarly to the previous subsection, it
is straightforward to show that the three following
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equations are equivalent

ỹk+1 = yk+1¡Hk+1x̂k+1=k (12)

vec Ỹk+1 = vecYk+1¡
(

ºX
s=1

[(Gsk+1)
T−Hs

k+1]

)
vec X̂k+1=k

(13)

Ỹk+1 = Yk+1¡
ºX
s=1

Hs
k+1X̂k+1=kG

s
k+1 (14)

where ỹk+1 2 Rpq and Ỹk+1 2Rp£q, respectively, denote
the innovations sequences in the vec-KF and in the
MKF, and Hk+1 is defined from (13). The point here
is that a natural expression for the matrix innovations
sequence Ỹk+1 is obtained as a function of the original
plant coefficients Hs

k+1 and G
s
k+1 (see (2)). According

to KF theory, the pq£pq covariance matrix of Ỹk+1,
denoted by Sk+1, the mn£pq KF gain matrix, and
the a posteriori vec-estimate, x̂k+1=k+1 are computed
as [10, p. 246]

Sk+1 =Hk+1Pk+1=kHT
k+1 +Rk+1 (15)

Kk+1 = Pk+1=kHk+1S¡1k+1 (16)

x̂k+1=k+1 = x̂k+1=k +Kk+1ỹk+1 (17)

where Rk = covfVkg. In order to recover the matrix
format for the state estimate update equation (17), we
use the following proposition.

PROPOSITION 1 Let X 2 Ri3£i4 , Z 2Ri1£i2 , and A 2
Ri1i2£i3i4 be given matrices. Let z 2Ri1i2 and x 2Ri3i4 be
defined by z= vecZ and x= vecX, respectively. Let the
block-matrix A be partitioned as

A=

266666666664

A11 A12 ¢ ¢ ¢ A1l ¢ ¢ ¢ A1i4

A21 A22 ¢ ¢ ¢ A2l ¢ ¢ ¢ A2i4

...
...

. . .
...

. . .
...

Aj1 Aj2 ¢ ¢ ¢ Ajl ¢ ¢ ¢ Aji4

...
...

. . .
...

. . .
...

Ai21 Ai22 ¢ ¢ ¢ Ai2l ¢ ¢ ¢ Ai2i4

377777777775
(18)

where Ajl 2Ri1i3 , then the vector equation

z= Ax (19)

is equivalent to the matrix equation

Z =
i2X
j=1

i4X
l=1

AjlXElj (20)

where Elj is an i4£ i2 matrix with 1 at position (lj) and
0 elsewhere.

The proof is omitted here for the sake of brevity. It
can be found in [17, pp. 254—257].

The matrix Kk+1 in (16) can be viewed as an
mn£pq array of nq submatrices of dimension m£p.
Let Kjl denote the m£p submatrix of Kk+1 at position
(jl). Then, applying Proposition 1 to the second term
on the right-hand side (RHS) of (17) with A=Kk+1
and x= vec Ỹk+1 yields

X̂k+1=k+1 = X̂k+1=k +
nX
j=1

qX
l=1

Kjlk+1Ỹk+1E
lj: (21)

Equation (21) is the measurement update equation
for the matrix state estimate at time tk+1. From KF
theory [10, p. 245], omitting the time subscript for
clarity, the covariance matrix of the a posteriori
estimation error at time tk+1 is

Pk+1=k+1 = (Imn¡KH)Pk+1=k(Imn¡KH)T+KRKT:
(22)

C. Summary of the Matrix Kalman Filter

Initialization:

X̂0=0 = X̄0 (23)

P0=0 =¦0: (24)

Time Update equations:

X̂k+1=k =
¹X
r=1

£rkX̂k=kª
r
k (25)

©k =
¹X
r=1

[(ªr
k )
T−£rk] (26)

Pk+1=k =©kPk=k©
T
k +Qk: (27)

Measurement Update equations:

Ỹk+1 = Yk+1¡
ºX
s=1

Hs
k+1X̂k+1=kG

s
k+1 (28)

Hk+1 =
ºX
s=1

[(Gsk+1)
T−Hs

k+1] (29)

Sk+1 =Hk+1Pk+1=kHT
k+1 +Rk+1 (30)

Kk+1 = Pk+1=kHT
k+1S

¡1
k+1 (31)

X̂k+1=k+1 = X̂k+1=k +
nX
j=1

qX
l=1

Kjlk+1Ỹk+1E
lj (32)
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where Kjlk+1 is an m£p submatrix of the mn£pq
matrix Kk+1 defined by

Kk+1 =

26666664

K11k+1 ¢ ¢ ¢ K1lk+1 ¢ ¢ ¢
...

. . .
...

. . .

Kj1k+1 ¢ ¢ ¢ Kjlk+1 ¢ ¢ ¢
...

. . .
...

. . .

37777775
| {z }

q matrices

9>>>>>>=>>>>>>;
n matrices

(33)

and Elj is a q£ n matrix with 1 at position (lj) and 0
elsewhere

Pk+1=k+1 = (Imn¡KH)Pk+1=k(Imn¡KH)T+KRKT:
(34)

The variance and the covariance associated with X̃[i,j]
[the element (ij) in the estimation error matrix X̃] are

varfX̃[i,j]g= P[(j¡ 1)m+ i, (j¡ 1)m+ i]
(35a)

covfX̃[i,j],X̃[k, l]g= P[(j¡ 1)m+ i, (l¡ 1)m+ k]
(35b)

where i,k = 1 : : :m, and j, l = 1 : : :n. Equations (35)
are proved using the definitions of the vec-operator
and of the covariance matrix of a random matrix.
The variable X̃ denotes either the a posteriori or the
a priori estimation error as applicable, and P is the
associated covariance matrix.

D. Discussion

The proposed filter behaves like the conventional
linear KF. It is a time-varying algorithm for optimal
recursive estimation of a matrix state process using
a sequence of matrix measurements. The MKF is a
natural extension of the conventional KF. The two
new dimensions are the number of columns in the
state matrix n and the number of columns in the
measurement matrix q. Conversely, the ordinary vector
KF is a special case of the MKF. By taking n= q= 1
the proposed algorithm yields exactly the KF. When
n 6= 1 or q 6= 1 the MKF provides us with equations
where the state matrix estimate is propagated and
updated as a matrix using the coefficients of the
matrix plant. Therefore, the estimation algorithm
preserves the physical insight into the original plant.
The MKF includes as special cases two other

matrix estimators presented in the literature, the
matrix BLUE [13], and the simplified multivariate
least-squares (SMLS) algorithm [15, p. 96]. Consider
the special case of a time-invariant system with a
time-invariant state-matrix, where the measurement

model is described by Y =HX +V, H is full-rank, the
rows of V are independently identically distributed
(IID), and there is no a priori estimate, then
developing an MKF using these assumptions leads
to the matrix BLUE of [13]. The proof is detailed
in [17, pp. 257—259]. The SMLS algorithm can be
derived as a special case of the MKF algorithm as
follows. Assume that the system is time invariant,
the measurement is a row-matrix, which is expressed
as yTk+1 = h

T
k+1X + v

T
k+1, the covariance matrix of the

measurement noise vk+1 is the identity matrix, and
the columns of the initial state matrix estimate are
IID. Then, developing an MKF based on the above
assumptions yields the SMLS algorithm. A detailed
proof is given in [17, pp. 260—262].

IV. COMPARATIVE EXAMPLES

In this section, we present several examples
taken from engineering problems, which illustrate
analytically and numerically the advantage of the
MKF over the vectorized filter. Note that, for the sake
of brevity, the necessary developments leading to the
matrix equations are only outlined.

A. Three-Dimensional Tracking Filter

This example is taken from a guidance problem,
as presented in [18], with an intercepting missile
heading towards an accelerating target, where the
authors addressed the problem of estimating the
relative position vector, the relative velocity vector,
and the inertial target acceleration expressed along
the interceptor sensor coordinate frame. Denoting
the three-dimensional vectors by pk, vk, and ak,
respectively, the authors defined a 3£ 3 state matrix
Xk as follows:

Xk
¢
=[pk vk ak] (36)

and, using (36), developed the following discrete-time
process matrix equation:

Xk+1 = C(k+1,k)XkF
T+Wk: (37)

In (37), C(k+1,k) is a 3£ 3 rotation matrix which is
due to the rotation of the interceptor sensor coordinate
frame, F is a 3£ 3 transformation matrix that is
only a function of the discretization step size, that is,
tk+1¡ tk, and Wk is a matrix of process noises. If the
matrix equation (37) is vectorized, this will lead to the
following 9£ 9 vector equation:

xk+1 =©kxk +wk (38)

where ©k is the 9£ 9 matrix
©k = F−C(k+1,k) (39)

and xk and wk are the vec-transforms of Xk and Wk,
respectively. Alternatively, the system dynamics can
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be represented by three explicit 3£ 1 vector equations
as follows:

pk+1 = C(k+1,k)(f11pk +f21vk +f31ak)+w
p
k

(40a)

vk+1 = C(k+1,k)(f12pk +f22vk +f33ak)+w
v
k

(40b)

ak+1 = C(k+1,k)(f13pk +f23vk +f33ak)+w
a
k:

(40c)

Comparing the various expressions for the process
equations (37) to (40), we see that (37) presents the
advantage of synthetically describing the system
dynamics through a single matrix equation. Also, it
preserves the physical insight into the problem: the
state equations for pk, vk, and ak, are written in the
coordinate frame that is associated with the seeker
sensor. From the physics of the problem, the seeker
is rotating between two consecutive times tk and tk+1,
and to account for this rotation, the three columns of
the state matrix need to be projected onto the new
seeker sensor’s frame at tk+1. Mathematically, this
is conveniently done by left-multiplying the state
matrix by the seeker’s frame incremental rotation
matrix C(k+1,k), as in (37). Not only is the physical
insight masked in (38) and (39) because of the use
of the Kronecker product, but the vectorization also
induces more computations in the associated filter.
The latter fact will be emphasized and illustrated in
the next section. Although (40) retain the physical
insight, they have the drawback of losing the simple
structure inherent to (37).

B. Quaternion Estimation

In aerospace systems a crucial problem is that of
determining the spatial orientation of one Cartesian
coordinate frame, say B, with respect to another
one, say R; this problem is known as the attitude
determination problem. One way of representing
attitude is by means of the four Euler parameters,
which are the components of a unit-norm vector called
the quaternion of rotation, q 2R4. It is well known
that the quaternion dynamics can be modeled as the
following process equation (see e.g. [3, pp. 511—512]):

qk+1 =©kqk +wk (41)

where ©k is a 4£ 4 matrix that is computed as

©k = exp
½
1
2

Z tk+1

tk

−tdt

¾
(42)

in which

−t =
·¡[!t£] !t

¡!Tt 0

¸
(43)

and !t 2 R3 in (43) is the angular velocity vector of
B with respect to R resolved in B and [!t£] is the
skew-symmetric cross-product matrix. Usually !t
is the noisy output of a triad of gyros and wk is a
process noise vector that models the uncertainty due
to the gyro noises. Also note the clear interpretation
of the first term on the RHS of (41); it accounts for
a rotation in R4 of the quaternion via the orthogonal
transition matrix ©k. One very popular approach to
the optimal estimation of the quaternion consists in
extracting the normalized eigenvector that belongs
to the largest positive eigenvalue of a special
four-dimensional matrix K (see [3, pp. 426—428]).
In a previous work [19], it was proposed to optimally
estimate the elements of the matrix K itself, before
feeding them to an eigenvector solver, and using the
results of [20], the process equation for that matrix
was written as a 4£ 4 matrix equation, as follows:

Kk+1 = ©kKk©
T
k +Wk (44)

where the 4£ 4 matrix ©k is identical to that of (43),
and Wk is a process noise matrix. Note that one can
easily interpret the similarity transformation in the
first term on the RHS as the underlying “rotation” of
the system of eigenvectors, with one of them being
the sought quaternion. If (44) is vectorized, this will
lead to the following 16£1 vector equation:

vecKk+1 = (©k −©k)vecKk +vecWk: (45)

In (45) the structure is lost, and the first term on the
RHS is not straightforwardly interpreted. In addition,
the filter computational burden will increase (see the
next section).

C. Direction Cosine Matrix Estimation

Another example, also from the realm of attitude
determination, illustrates the advantage of the matrix
notation. Here, the DCM, denoted by Dk, is used
as the attitude representation of a rotating frame B
with respect to a reference frame R. In this case
the process equation for Dk is represented as the
following 3£ 3 matrix equation:

Dk+1 =©kDk +Wk (46)

where ©k is the 3£ 3 matrix

©k = exp
½Z tk+1

tk

(¡[!t£])dt
¾

(47)

and !t is the angular velocity vector mentioned in
the previous example. The first term on the RHS in
(46) has a clear physical interpretation as it expresses
the rotation of B with respect to R. This physical
insight is lost in the vectorized version of (46), which
is written as follows:

vecDk+1 = [I9−©k]vecDk +vecWk: (48)
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As stated earlier, the use of the 9£ 9 transition matrix
in (48) increases the filter computational burden.
Besides the foregoing advantages, keeping the model
equation in a matrix form allows to incorporate into
the MKF the nonlinear orthogonality constraint on
the DCM estimate in a straightforward manner. The
approach consists in modeling the orthogonality
constraint as a pseudomeasurement equation. Starting
from the conventional orthogonality constraint
equation, that is,

DTk Dk = I3 (49)

where I3 2 R3 is the identity matrix, one can develop
the equivalent equation

Dk = (
3
2 I3¡ 1

2D
T
k Dk)Dk: (50)

Note that using (49) in (50) yields the trivial identity
Dk =Dk. The choice of (50) is not unique. In this
case, it is inspired by an orthogonalization iterative
formula introduced in [21]. Denoting the current
estimate of Dk by D̂k, and using it in (50), yields

D̂k = (
3
2 I3¡ 1

2 D̂
T
k D̂k)Dk +V

ort
k (51)

where Vortk is a 3£ 3 modeling error matrix due to
the errors in D̂k. The sequence V

ort
k is modeled, for

convenience, as a zero-mean white noise sequence
with covariance matrix ´ortk I9. Upon defining the
following matrices:

Zk
¢
=D̂k (52a)

Hk
¢
=(32 I3¡ 1

2 D̂
T
k D̂k) (52b)

one can rewrite (51) as follows

Zk =HkDk +Vortk : (53)

Equation (53) is a pseudomeasurement model
equation where the pseudomeasurement is Zk, the
observation matrix is Hk and the noise is Vortk . This
equation can readily be incorporated into the MKF
framework. The associated measurement-update stage
is such that it produces a new estimate by enforcing
the orthogonality property on the current one. This is
done via the choice of the filter parameter ´ortk , which
is a design parameter and requires tuning: a high
value of ´ortk will induce soft orthogonalization, and a
low value of ´ortk will induce a hard orthogonalization.
It was shown in a previous work [22] that this type
of constrained Kalman filtering produces smooth
transients and avoids undesirable overshoots of the
estimation errors. Since the orthogonality property
is naturally written as a matrix equation, this greatly
facilitates the analysis of the filter.
The decomposition of the matrix equation (49)

into scalar equations yields the following six scalar

TABLE I
Counts of FLOPs for Basic Matrix Operations [10, p. 258]

Operation Multiplications Additions

AMN §BMN – MN

AMN BNL MNL ML(N ¡ 1)

constraints:

d211 +d
2
12 + d

2
13 = 1 (54a)

d221 +d
2
22 + d

2
23 = 1 (54b)

d231 +d
2
32 + d

2
33 = 1 (54c)

d11d21 + d12d22 + d13d23 = 0 (54d)

d11d31 + d12d32 + d13d33 = 0 (54e)

d21d31 + d22d32 + d23d33 = 0 (54f)

where dij , for i,j = 1,2,3, denotes the components
of Dk. This results in a multiplication of equations, a
loss of structure and, thus, of insight into the resulting
filter. The higher the dimension n of the state matrix,
the higher is the number of equations: n(n+1)=2. In
addition, we notice that vectorizing equation (53) is
possible, but would yield filter equations where both
vectorized and matrix versions of the DCM estimates
are involved. As a result, the analysis of the vectorized
filter would not be as straightforward as that of the
MKF.

V. COMPUTATIONAL PERFORMANCE

A comparison of the number of floating point
operations (FLOPs) per cycle in the MKF and in
the vectorized KF (VKF) is presented here. One
cycle consists of one time-propagation stage and
one measurement-update stage. The computation
requirement in FLOPs is based on Table I. For
comparative purposes, we only consider the
computations that are not common to both filters,
and that consist of matrix algebraic operations. This
excludes, for instance, matrix manipulations such
as column extraction or concatenation. The specific
equations of interest are summarized in Table II.
For convenience, we recall in Table III the sizes of
the various variables involved in the MKF and in
the vectorized filter. Using Tables I—III to count the
number of FLOPs per cycle in each filter, we obtain
Table IV. Note that the general formulas for the MKF
are only valid for n > 1 and q > 1. For the cases
where n= 1 or q= 1, the matrix state-space model
equations would not involve matrices like ªr

k or G
s
k+1.

Indeed, being simply scalars, these matrices would be
incorporated in the other model variables; that is, £rk
and Hs

k+1 respectively, yielding the conventional vector
model equations.

REMARK The count for the measurement-update
stage in the MKF is based on a coding that exploits

CHOUKROUN ET AL.: KALMAN FILTERING FOR MATRIX ESTIMATION 153



TABLE II
Description of Equations that are Not Common to MKF and to Vectorized Filter

Stage MKF Equations Vectorized Filter Equations

Time-Propagation
X̂k+1=k =

¹X
r=1

£rkX̂k=kª
r
k

x̂k+1=k = ©k x̂k=k

Residuals
Ỹk+1 = Yk+1 ¡

ºX
s=1

Hsk+1X̂k+1=kG
s
k+1

ỹk+1 = yk+1¡Hk+1x̂k+1=k

Measurement-Update
X̂k+1=k+1 = X̂k+1=k +

nX
j=1

qX
l=1

Kjl
k+1Ỹk+1E

lj x̂k+1=k+1 = x̂k+1=k +Kk+1ỹk+1

TABLE III
Sizes of Variables Involved in MKF and in Vectorized Filter

MKF Variables Vectorized Filter Variables

X̂k=k , X̂k+1=k m£ n x̂k=k , x̂k+1=k mn£ 1
£rk m£m ©k mn£mn
ªrk n£ n

Yk+1, Ỹk+1 p£ q yk+1, ỹk+1 pq£ 1
Hs
k+1 p£m Hk+1 pq£mn
Gs
k+1 n£ q
K
jl
k+1 m£p Kk+1 mn£pq

TABLE IV
Number of FLOPs Per Cycle in MKF and in Vectorized Filter

Vectorized
Filter

Stage MKF Equations Equations

Time-Propagation 2¹m2n+2¹mn2 ¡¹mn+¹m¡m 2m2n2 ¡mn
Residuals 2ºmpq+2ºmnq¡ ºmq 2mnpq

Measurement- 2mnpq¡mnq+mn¡mq+m 2mnpq¡mn
Update

Note: Count is limited to noncommon equations.

the structure of the update formula, as given in the
third row of Table II. The steps are the following:
1) Extract the lth column from Ỹk+1, for l =

1,2, : : : ,q, and denote it by ỸCl.
2) Compute the vectors u(l,j) =Kjlk+1ỸCl, for

l = 1,2, : : : ,q, and j = 1,2, : : : ,n. Each vector u(l,j)
is the partial correction to the jth column of X̂k+1=k
contributed by the lth column of Ỹk+1.
3) Denote by ¢X̂ the total correction term in

the estimate update formula. For each column j of
¢X̂, denoted by ¢X̂Cj , add all the partial corrections
over all the columns of Ỹk+1; that is, do: ¢X̂Cj =Pq
l=1u(l,j), for j = 1,2, : : : ,n.
4) Build the matrix ¢X̂ and add it to the old

estimate; that is, do: X̂k+1=k+1 = X̂k+1=k +¢X̂.

Due to the presence of the parameters ¹ and
º in the matrix model only, a comparison of the
expressions for the MKF and the vectorized filter
is, in general, difficult. Nevertheless, as illustrated

TABLE V
Relative Computational Efficiency of MKF for Particular Sizes of

State Matrix and of Measured Matrix

Case m n p q ½ (%)

A 3 3 3 3 30%
B 4 4 4 4 40%
C 3 3 3 1 44%
D 100 100 100 100 67%
E 100 100 1 1 98%

through the various examples brought in the preceding
section, there is a motivation to consider the particular
cases where ¹ and º are small, at least with respect
to the dimensions of the model variables. In that
case, Table IV shows that there is a computational
advantage to the MKF over the vectorized filter
in the time-propagation stage and in the Residuals
computation. Both filters have, however, similar
complexity for the estimate update formula. To
facilitate a numerical comparison, we introduce the
relative computational efficiency ratio of the MKF
with respect to the vectorized filter, denoted by ½, and
defined as follows:

½
¢
=
NVKF¡NMKF

NVKF
¢ 100 (55)

where NMKF and NVKF are obtained by summing the
operations needed for computing the expressions
in the three rows of Table IV, for the matrix filter
and for the vectorized filter, respectively. Various
numerical results are summarized in Table V for
¹= º = 1. Case A is relevant to an estimator of the
DCM involving the orthogonality pseudomeasurement
model. In that case, using the MKF yields a value
of 30% for the efficiency ratio ½. In the example
involving the estimation of the 4£ 4 K-matrix using
4£ 4 matrix observations of that matrix state, the ratio
increases to 40%. Case C is relevant to an estimator
of the DCM processing 3£ 1 vector measurements
only. In that case, the relative advantage of using the
MKF increases to 44%. A matrix estimator of the
DCM equally using a vector measurement model
and an orthogonality pseudomeasurement model
(see [22]) has a relative efficiency ratio of 37%.
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Case D addresses a large scale hypothetical estimation
problem where both the state and the observation
matrices are 100£ 100. It appears that the relative
efficiency reaches an upper bound of 67%. If the
observations are sequentially processed as scalars
(case E in Table V), then the relative efficiency of the
MKF is even greater and reaches 98%. The above
results illustrate the relative numerical efficiency
of the MKF with respect to the vectorized version
in some cases that are motivated by engineering
problems.

VI. NUMERICAL EXAMPLE

The numerical example that is proposed
in this section belongs to the field of attitude
determination (AD) from vector measurements.
As mentioned earlier, AD algorithms from vector
measurements usually consist of two stages
(see e.g. [3, pp. 426—428]); in the first stage the
measurement data is collected in a convenient
matrix format, and in the second stage the attitude
is extracted by some numerical method. We focus
here on the first stage by designing an MKF that
filters noise out of the matrix of measurements. This
MKF is thus not an attitude estimator per se, but
rather a “prefilter” of the measurements. Consider
two Cartesian coordinate frames, B and R, where B
is attached to the spacecraft body, and R is a given
inertial reference frame. Let the representations
in B and R of any physical vector, like the Earth
magnetic field, or the line of sight unit vector from
the spacecraft to a celestial object, be denoted by bo
and r, respectively; then, bo and r are related by

bo =Dr (56)

where D is the DCM matrix [3, p. 410]. The reference
vector r is usually accurately known from tables
or almanac, while b is measured on-board the
spacecraft with some error. Denoting by v the
measurement error, and assuming that N simultaneous
measurements are performed at time tk, yields

[bk,1 ¢ ¢ ¢bk,N] = [bok,1 ¢ ¢ ¢bok,N]+ [vk,1 ¢ ¢ ¢vk,N] (57)

which is equivalently written as

Yk = Xk +Vk: (58)

The matrices Xk, Yk, and Vk, all in R3£N , are obviously
defined by (57). Equation (57) represents the matrix
measurement equation of a plant, which is represented
by the state matrix Xk. The goal is to design an
MKF that performs a regression on the matrix
measurements Yk in order to optimally estimate Xk.
The matrix state-space model for Xk is completed by a
process equation as follows. The kinematics law of a
rigid body in terms of the attitude matrix is described
by the well-known difference equation [3, p. 512]

Dk+1 =£
o
kDk (59)

£ok = expf¡[!ok£]¢tg (60)

where !ok is the true angular velocity vector of B
with respect to R, resolved in B, [!ok£] denotes
the cross-product matrix of !ok ; that is, for u 2R3,
[!ok£]u

¢
=!ok £u, and ¢t is the time increment,

¢t
¢
= tk+1¡ tk. We assume here that, for each vector

measurement, the rate of change of the associated
reference vector r is negligible. This is the case
when directions to stars are measured because stars
are assumed fixed in an inertial reference frame.
Furthermore, it is assumed that the same stars are
observed at each epoch time. This happens for a
spacecraft with an inertial-stabilized attitude, such
that the same portion of the celestial sphere can be
observed over time. The angular velocity vector is
measured by a triad of body-mounted gyros. Using
(56), (59), (60), and the definition of the state matrix
Xk yields, after some algebraic manipulations, the
following process equation

Xk+1 =£kXk +Wk (61)

where £k is obtained by substituting the measured
angular velocity !k for !

o
k in (60), and Wk is the

process noise. Equation (61) is the state process
equation of the matrix plant under consideration.
Equations (61) and (58) constitute the matrix
state-space model to which one can apply the general
MKF.
The tested scenario is for a spinning spacecraft that

undergoes nutation. The spin velocity is 0.464 r/min,
the nutation rate is 1 r/hr, and the nutation angle is
22:5±. As a special case, the gyro noise is assumed
to be a zero-mean white sequence with covariance
matrix Q²k = (0:01 deg/hr)

2I3. An analytic expression
for the 6£ 6 covariance matrix of Wk, Qk, is computed
as follows,

Qk = [(X̂k=k)
T− I3]LQ²kLT[(X̂k=k)T− I3]T¢t2 (62)

LT = [[e1£] [e2£] [e3£]] (63)

where fe1,e2,e3g is the standard basis in R3, and
X̂k=k denotes the a posteriori estimate of Xk at tk.
Equations (62) and (63) provide an initial value for
Qk, which is further refined by filter tuning. The
same two directions are simultaneously observed
at each sampling time. The reference-components
vectors of the two observed directions are chosen
as [r1 r2] = [e1 e2]. The vector observations noises
are assumed to be zero-mean, white sequences
with covariance matrices Rk,1 = 4 ¢ 10¡4I3[rad2] and
Rk,2 = 4 ¢ 10¡5I3[rad2]. They are also assumed to be
uncorrelated, so that Rk, the covariance matrix of
Vk, is a 6£ 6 block-diagonal matrix expressed as
Rk = diag(Rk,1,Rk,2). The initial value of the state
X0 is a Gaussian matrix random variable with mean
X̄0 = [e1 e2] and covariance matrix ¦0 = 0:2I6, where
I6 denotes the 6£6 identity matrix. The vector
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Fig. 1. Sample run. Time histories of estimation errors.

Fig. 2. Monte-Carlo simulation results. Full thick line: Monte-Carlo mean, broken thin lines: Monte-Carlo §1 ¾,
full thin lines: filter §1 ¾.

measurement noises, the gyro noise, and the initial
state are assumed to be uncorrelated with one another.
The MKF algorithm is initialized with X̂0 =O6, and
P0=0 = 5I6 (O6 and I6 are the zero matrix and the
identity matrix, respectively, in R6).
Figs. 1 and 2 summarize the simulation results.

Fig. 1 presents a sample run of the time histories of
the estimation errors. The left-hand column of the
plots corresponds to the first observed direction, while
the plots in the right-hand column correspond to the
second direction. It can be seen that the estimation

errors are convergent. Because of the higher accuracy
associated with the second vector observation, the
estimator performance is better in the right-hand
column, e.g., the transient phases are shorter and the
steady-state values are smaller. These conclusions are
confirmed when looking at the 100 runs Monte-Carlo
simulation results (Fig. 2). The 1 ¾-envelopes are
clearly narrower in the right-hand column than in the
left-hand column. Moreover, Fig. 2 shows that there
is consistency between the actual variance and the
filter-computed variance. Note that this happens in
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spite of the nonlinearities introduced in the process
equation and in the expression for Qk.

VII. CONCLUSION

It has been shown that stochastic systems
described by linear matrix difference equations
and observed through linear matrix measurement
equations can be estimated by a matrix version of
the ordinary KF. The proposed estimation algorithm
uses a compact matrix notation to produce the matrix
estimate and the estimation error covariance matrix in
terms of the original plant coefficients. The MKF is a
natural and straightforward extension of the ordinary
KF, and includes, as special cases, other matrix
filters previously introduced. Comparative examples
motivated by engineering problems illustrated the
notational advantage of the matrix filter over the
vectorized filter. If the parameters ¹ and º are small,
the matrix filter presents a computational advantage,
too. As a numerical example, an MKF was designed
for solving the first stage of an AD problem.
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