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Symbols and Abbreviations

achieved acceleration

commanded acceleration

maximal achievable acceleration
continuous time state transition matrix

continuous time input matrix

correlation between the sequences of innovation and of signature

discrete time state transition matrix

discrete time input matrix

maximum likelihood ratio

detection threshold

measurement matrix

Kullback-Leibler divergence

time

reinitialization time

switch time

Kalman filter with shaping filter

Generalized Likelihood Ratio

likelihood ratio

identity matrix

state correction matrix of a mismatched dynamic profile
state estimate covariance matrix

continuous time process noise covariance matrix
discrete time process noise covariance matrix
range

cartesian position

innovation covariance matrix

single shot kill

known input

unknown input

true dynamical profile

normalized dynamical profile

estimated dynamical profile

sequence of innovation from the mismatched filter (vector)
velocity

Kalman gain

process noise

state vector

measurement
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false alarm rate

evader heading angle

time interval between two measurements

error on the estimated magnitude of a dynamic profile
dynamical profile mismatched for state estimation
measurement noise

state prediction of a dynamic profile

pursuer heading angle

true magnitude of the dynamic profile

estimated dynamic profile magnitude

transition matrix applied to the preceding state prediction
signature in the innovation

measurement noise covariance (angular)

measurement noise covariance (cartesian)

bloc matrix build from the sequence of innovation covariance
time constant lag

sequence of signature in the innovation (vector)

a component of the state prediction of a reinitialization error’s dynamic profile
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1. Introduction

In the last few years, successful attempts to intercept a non-maneuvring ballistic missile have
been realized. This is a significant achievement because the constraint on the homing accuracy
to intercept a ballistic missile with an interceptor are considerable: a hit-to-kill is required for a
successful interception. However, the interception of a maneuvring ballistic missile is still an open
issue. The main problem stems from the imperfect information on the evader state, especially the
uncertainty about the evader acceleration. In situations like tactical engagement, the interceptor
may enjoy a large maneuvrability advantage over the evader, effectively allowing the interceptor
to cope with a maneuvring evader despite imperfect information on the evader state. In ballistic
engagement, the interceptor does not enjoy any longer a significant maneuvrability advantage over
the evader. The accuracy of the homing loop is then very dependent on the evader maneuvers; in
particular, abrupt changes in the evader acceleration can have a devastating effect on the homing
accuracy. Quick detection of such changes is likely to improve the performance of the interceptor.

Various techniques has been developed to detect changes in dynamical systems. These tech-
niques can be grouped into three main categories: shaping filter methods, multiple model filter
methods and residual based methods. A review of these techniques is presented in Bar-Shalom et
al. 2001 (with an emphasis on multiple model methods) and in Lai 1995 (residual based methods
only). One of the residual based techniques of interest is the Generalized Likelihood Ratio (GLR)
test. The GLR test can handled situations in which the magnitude of the change and the onset time
of the change are both unknown. From this GLR test for detecting a change, it is possible to get
an estimate of the magnitude of the change and an estimate of the change time. From a theoretical
point of view, some optimality results related to the delay of detection have been demonstrated
(Lai 2000) for the GLR test and other closely related likelihood ratio tests

A few studies about using a GLR detector/estimator in pursuit/evasion problems have been
published, see Dowdle et al. 1982 and Korn et al. 1982. These studies addressed the tracking
performance of the GLR detector/estimator but not the performance of the whole homing loop.
Also, the examples presented in these papers are limited to the detection of a single change and
perfect information on the initial state is provided. The aim of this work is to assess the performance
of the homing loop using a GLR detector/estimator during the terminal guidance phase of an
engagement between an anti-missile (the pursuer) and a maneuvring ballistic missile (the evader)
and in situations in which the initial target acceleration is unknown. The GLR detector/estimator
is described in section 2. The details of the simulation code for the pursuit/evasion engagement are
exposed in section 3. The results obtained are presented and discussed in section 4. The section 5
contains the conclusion and some future avenues of research.
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2. GLR detector/estimator

The GLR detector has been introduced by Willsky & Jones (1976) along with a variation of
it suitable for practical implementation known as a window limited GLR.

For detection of a change, the detector described in this section closely follows the window
limited GLR. of Willsky & Jones except for the addition of a signature to probe for an eventual
reinitialization error. This addition allows increasing the robustness of the detector.

For state estimation, the approach presented here is different from the approach of Willsky &
Jones 1976. The state estimation filter is separated from the detection filter. The GLR detector is
used to adapt online the bandwidth of the state estimation filter and to correct the state estimate.
Before the detection of a change, the shaping filter has a high bandwidth. Upon detection of a
switch, the state estimate is corrected using the maximum likelihood estimation of the unknown
input dynamic profile generated by the GLR detector. The bandwidth of the shaping filter is also
reduced for some period of time. This period of time should depend on the lower bound for the
time interval between switches of dynamic profiles.

2.1. Problem definition

Let the system model be:

z(k+1) = Fz(k) + Grui(k) + Gouz(k) + wk +1), x € R" u1o € R, w € N(0,Qu)
y(k) = Hz(k) +n(k), y € R™,n € N(0,Qn)

Here, w, n are white gaussian noise, u1 is a known input and uo is an unknown disturbance.
Although ws(k) is unknown, the sequence us(-) is assumed to belong to a known finite set of
dynamic profiles of unknown magnitude and starting at unknown time. Moreover, the time period
of eventual switches between dynamic profiles by us(-) is bounded from below.

The problem is to estimate the system state online. To do so, the starting time of the change
corresponding to the dynamic profile of uy(-) is identified along with its magnitude using a Gener-
alized Likelihood Ratio (GLR) approach. The GLR technique is a sequential probability ratio test
to decide between the hypothesis Hy “no change occurred” versus the hypothesis H; “a change
occurred before time k”. It applies to situations where the time of the switch and the magnitude
of the change are a priori unknown and are to be estimated; the estimation of these parameters
being done using a maximum likelihood technique.

2.2. Algorithm

The algorithm is working in four steps:
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1. A Kalman filter is designed assuming without loss of generality, uo(-) = 0. This filter is
denoted as the mismatched filter. If this assumption on us(-) is true, the generated innovation
sequence V,, is an independent sequence with a gaussian distribution and zero mean. If the
assumption on us(-) is wrong, then the sequence V,, is a gaussian distribution of zero mean
with the addition of a sequence of signature Y(usy) (see Basseville & Nikiforov 1993, p. 240):

_ N(07 2)7 UQ(’L) =0Vi <k
£Vm) = { N(0,2) + Y(uz), u2(i) #03F <k

In order to get a large signature if the assumption on wug(-) is wrong, and thus improves its
detectability, the mismatched filter should have a low bandwidth.

2. The GLR test is applied on the innovation sequence V,,, to test the assumption on us(-), see
below.

3. The state is estimated based on the GLR test result. Notice that the filter for state estimation
is different from the mismatched filter used in step 1 for generating the sequence V,,, see below.

4. The algorithm is reinitialized upon detection and isolation of a change, see below.

2.2.1. The GLR test

For the case of additive changes of unknown and unbounded magnitude embedded in gaussian
noise, the log-likelihood ratio I(k, ks) is defined as (see Basseville & Nikiforov 1993, p. 241):

Uk, ) = ok, ks )d(k, ) — %ﬁQ(k,ks)J(k,ks)

with
dk,ks) = YT(k k)27 1V,
J(k,ks) = YT(k k)1 (K, k)

where ks is the change point, d(k, k) is the correlation between the innovation sequence V,,, and
the signature sequence Y (k, ks); 2 is the block matrix formed by the component covariance of the
innovation sequence V;,,; J(k, ks) is the Kullback-Leibler divergence; and ©(k, ks) is the magnitude
estimate. Using the maximum likelihood estimate of the magnitude, the log-likelihood ratio can be
rewritten as:

1d%(k, ks)

Sgp l(k7 ks) - 5 J(k‘,k‘s)
. d(k, ks
ok, ks) = J((k k))

Assuming that the measurement noise and process noise are gaussian, the [(k, ks) have a non-
central x? distribution with one degree of freedom and non-centrality parameter A = v2.J(k, ks).
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Under the same assumption, the maximum likelihood estimate of the magnitude © has a gaussian
distribution with covariance 02 = v=2J7!(k,ks) (see Basseville & Nikiforov 1993, p. 242):

E(S(k,ks)) = X2(17V2J(k,k3))
Lk, ks)) = N,v 2071k, k)

Let g(k) be the maximum log-likelihood ratio:

g(k) = maxsup I(k, ks)

8 14

Then, the hypothesis H; that a change occurred versus the hypothesis Hy that no change
occurred is tested using a sequential x? test:

g(k) > h(a) : a change is detected and isolated
g(k) < h(c) : no change detected

The detection threshold k() is chosen based on the specified probability of false detection «
and on the expected statistical distribution of the log-likelihood ratio if hypothesis Hy is true. In
the case of gaussian noise, this statistical distribution is a central chi-square distribution with one
degree of freedom x2(1,0).

2.2.2. State estimation

The filter for state estimation is adjusted in function of the GLR test result. There’s three
cases to consider:

1. No change detected, i.e. the maximum log-likelihood ratio is less than the detection threshold.
A dynamical change may (or may not) have occurred but if so, it’s not detectable yet. Under
theses circumstances, a filter with a high bandwidth is used.

2. A change is detected. The state estimate is corrected using the estimated dynamic profile of
the change detected by the GLR test. After correction, the filter bandwidth is reduced for
some period of time. This period of time depends on the lower bound of the time duration
between switches and on the estimated change point.

3. A previously detected change appears to be a false alarm shortly after detection (i.e. the
reinitialization of the detector). The correction of the state estimate is cancelled and the
filter bandwidth returns to a high level.

The chosen filter for state estimation is a Kalman filter with a shaping filter. The shaping
filter is an integrator of a random walk. The augmented state associated to the shaping filter is
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interpreted as the Kalman filter estimate of the unknown input us. The filter bandwidth is adjusted
by setting appropriately the covariance of the random walk.

Upon detection of a change, the state estimate z(k|k) is corrected using the information on
the dynamic profile. Let’s denote the uncorrected state estimate as z(k|k)oo. Then:

z(k|k) = z(k|k)oo + M (K, ks) AU, (K, ks)

where
M(k,ks) = (I—-W(k)H)T(k,ks)
AUy (k,ks) = UygLR — UsSF
and
k—ko—1
D(k,ks) = Gy ®k-1)Gy --- [T ®k-5-1))Gs
§=0

o) = F(I—W(k)H)

In the last equations, 02GLR is the dynamic profile estimated by the GLR detector, 028F is
the dynamic profile estimated by the shaping filter and W (k) is the Kalman gain.

If the previously detected change appears to be a false alarm shortly after the detection,
the state correction is cancelled. Let z(k|k)o be the corrected state, then the state without the
correction is:

z(k|k) = z(k|k)o — (I — W(k)H)E(k.ko,kS)AUQ(kO,kS)
with
k—ko—2
Bk, ko ks) = | [[ @k —i—1)| FM(ko,ks)
j=0

2.2.8.  Signature in the innovation sequence
Let’s define Uy (k, ky) as a dynamic profile with a normalized magnitude. The signature p(k, k)
in the innovation sequence is then defined as:
p(k,ks) = H*T*(k, ks)Us(k, ks)
The corresponding sequence of signature Y (k, ks) can be written as:

Y(k,ks) = U*(k,ks)Us(k,ks)

k—ks—2 7
HG, H®(k-1)Gy - H J| ®(k-j—1)Gy
j=0
T (k,ks) = 0
: : HG, H® (ks + 1)Gs
) 0 HG, .
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See the appendix for the derivation.

2.2.4. Reinitialization

After detection and isolation of a change, the GLR. test and the mismatched filter are reinitial-
ized. A change is deemed ”isolated” once the maximum likelihood ratio reaches some threshold.
The latter threshold should be higher or equal to the detection threshold (see the GLR section).

A high detection threshold allows for a better estimation of the change magnitude and change
point. Also, a high threshold delays the reinitialization after detection of a change, so a high
threshold may allow the detection of a false alarm. However, in situation for which further changes
are expected in the future, the reinitialization must occurred before the next change point. So,
there’s a trade-off in choosing the reinitialization threshold. This reinitialization requirement is
restricting the application of the algorithm to situations where changes are occurring sparsely, i.e.
the time duration between changes is bounded from below (Basseville & Nikiforov 1993, p. 57).

To reinitialize the GLR test, the likelihood ratios are reset to zero and only the signatures with
a change point after the reinitialization are considered.

To reinitialize the mismatched filter, the dynamical model used by the mismatched filter is
updated and the state estimate of the mismatched filter is corrected. The updated dynamical
model uses the GLR estimated dynamic profile of ug(-) instead of the assumption ug(-) = 0. The
state estimate of the mismatched filter can be corrected in many ways as discussed by Caglayan
& Lancraft 1983. The approach chosen here is a direct correction of the mismatched filter state
estimate. This approach assumes that the maximum likelihood state estimates provided by the
GLR detector can be trusted. Let z*(k|k)o be the uncorrected mismatched filter state estimate.

Then, the corrected state estimate is:

A~

2 (kIK) = &* (Ik)oo + M*(k, k) Uy LR

where
UsGLR = v(k, ks)Us(k, ks)

The matrix M*(k, k) is defined as in the state estimation section (see above) but is computed
using the matrices of the dynamical model used by the mismatched filter. If the dynamic profile
is constant, the vector [72GLR can be replaced by a scalar 42 and the matrix I'*(k, ks) involved in
the computation of M*(k, ks) simplifies to:

k—ks [m—1
r*(k, k) = [Z ( @*(k—j—l))

m=0 \ j=0

G3
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2.2.5. Reinitialization error

In general, in a stochastic environment the estimated magnitude of the dynamic profile U
and the true magnitude are not equal. The resulting error AU, produces its own signature on the
innovation sequence after the reinitialization (i.e. k > ko). The error is expressed as:

AUy = U2|true_02GLR
= UQ(ko,ks)AI/

and its signature as:

p(k‘, ks)AUg =H* [E*(k, ko, ks)UQ(k(), k‘s) + P*(k, ko + 1)Ug(k, ko + 1)] Av

This signature can be added to the bank of signature used by the GLR detector to later detect
and correct for the error Av. The correction associated to this signature is expressed as:

z*(k|k) = 2*(k|k)oo + M*AD

with
M* = (I —W*(k)H) [E*(k, ko, ks)Ua(ko, ks) + T*(k, ko)Us (K, ko + 1)]

2.2.6. Recursive computation

To alleviate the computational burden of the algorithm, the various equations can be rewritten
in a recursive manner. Assuming the dynamic profile is constant and is equal to one (uy = 1):

T(k+1,ks) = Go+ O(k)T(k, ks)

D(ks +1,ks) = G2
Normalized signature:

p(k,ks) = HT (k, k)
Normalized signature due to a reinitialization error:
p(k, ko) av, = H (E(k, ko, ks) + T'(k, ko))

with

E(k+1,ko,ks) = ®(k)E(k, ko, ks)

E(ko + 1, ko, ks) = FM(ko,ks)
Log-likelihood ratio:
1d?(k +1, k)
2 J(k+1,k;s)
d(k+1,ks) = d(k,ks)+ p(k+1,ks)S; ) jom(k + 1)
J(k+1,ks) = J(k,ks) +p(k +1,ks) S p(k +1, ks)

I(k+1,k) =
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where vy, (k + 1) is the k + 1 innovation from the mismatched filter and Si1 is the corresponding
covariance of the innovation.

2.3. Comments

A full implementation of a GLR test would imply a growing bank of signature. This is why
for practical implementation the window limited GLR test is used. The window limited GLR
test considers only the dynamic profiles with a switch time within some specified sliding window.
The window limited GLR isn’t a finite horizon technique. Because the likelihood ratios itself are
computed against all the previous information, not just the information in the window (Basseville
& Nikiforov 1993).

The approach chosen to reset the filter for state estimation after detection of a change is not
optimal because only the information of the dynamic profile with the maximum likelihood estimate
is used, however this simple approach as shown to give good results in some applications (Willsky
1986). An alternative to the current approach could be to build the pdf of the change using the
likelihood ratio of each signature and then use this pdf to correct the state estimate (Caglayan &
Lancraft 1983).
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3. Simulation code

A simulation code is used to model a pursuit-evasion engagement between a pursuer and an
evader. The model used in this work is restricted to a horizontal plane, the Earth is assumed to be
flat (i.e. no Coriolis and centripete forces) and the gravitational and drag effects are neglected. The
pursuer and the evader flight at constant speed, they are treated as point mass and their dynamic

is assumed to be subject to a first order lag.

3.1. Dynamic

Let a% be the pursuer commanded acceleration, ap its achieved acceleration and 7p be the
time constant of the first order lag. The notation is similar for the evader but the evader quantities
are denoted by the subscript £ instead of P. The non-linear equations describing the interception
in Cartesian coordinates (denoted by the subscripts 1 and 2) are:

REl = —Vpcos(y), REQ = Vpsin(y)
Ry = =V cos(B), Rpgo = Vi sin(B)
_ ér

Y = Ve
;o
g = Vi
c p—
C.lP = 7(1,})7_ aP
P
c —
dE‘ = 7GIET aE
E

3.2. Estimator

Beside the GLR detector/estimator, a Kalman filter with a shaping filter (Kalman/SF) is
implemented. The shaping filter is an integrator of a random walk. The matrices used by the
Kalman/SF filter (F,G, H) representing a linearized dynamic of the engagement are:

01 0 0 O
00 1 -1 0
F(A) =L Y(sI - A, A=[00 = 0 -
00 0 =2 0
TP
00 0 0 0
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and the state vector is:

The elements of the state vector are the relative lateral distance (z1), the relative lateral velocity
(z2), the evader achieved acceleration (z3), the missile achieved acceleration (z4) and the evader
commanded acceleration (z5).

The measurements are subject to an additive gaussian noise. The gaussian noise is simulated by

applying a Box-Muller transformation to numbers produced by a pseudo-random number generator

2

having a uniform distribution. The angular measurement 6 and its covariance o“ are converted in

Cartesian (y, 05) using the small angle approximation:

y = RO
ag = (R02)2

3.3. Guidance laws

Two guidance laws are available and they are denoted DGL/1 and DGL/0. These guidance laws
are derived from differential game theory and both require the assumption of perfect information
to be optimal. These two guidance laws are expressed as:

ap = ap*sign(ZEM)

where ZEM stands for the Zero Effort Miss. The laws DGL/1 and DGL/0 differ in their way of
computing the zero effort miss. The law DGL/1 includes the information on the evader acceleration
in the computation of the ZEM (and assumes the acceleration will remain constant) while DGL/0
neglects the information on the evader acceleration. See Shinar & Shima 2000 and references their
in for more details about these guidance laws.
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4. Results

This section assesses the performance of the GLR detector/estimator against the Kalman/SF
filter. The simulation parameters are chosen to represent a terminal guidance engagement between
an anti-missile (pursuer) and a ballistic missile (evader). During the engagement, the evader at-
tempts a single bang-bang maneuver; the switch time of this bang-bang maneuver is unknown to
the pursuer.

4.1. Parameters

The parameters are the following:

initial range : R=20000 m
pursuer velocity : vp = 2300 m/s
evader velocity : vy = 2700 m/s
maximum pursuer acc. 1 ap®=30g
maximum evader acc. : ap®=15g
pursuer time constant lag : 7p=0.2s
evader time constant lag : Tg=02s
measurement frequency : f =100 Hz
measurement noise covariance : o2 = 0.1 mrad

The initial relative geometry is chosen to be a head-on engagement. The filters assume the zero
initial conditions.

For the Kalman/SF filter, the process noise covariance matrix Q) is set to the covariance of the
max )2
random walk of the shaping filter ¢,. Following Zarchan 1997, ¢, is chosen to be ¢, = 4%;
iy is the expected engagement duration.

0000 0

A 0000 0
Qk:/ F(r)QFT(r)dr, Q=100 0 0 0
0 0000 O
00 0 0 ¢n

where A is the time interval between measurements. The initial covariance matrix of the state
estimate is set to:

(Ro?)? 0 0 0 0

0 (0.35vp)? 0 0 0

P(0[0) = 0 0 (amez)2 0 0
0 0 0 1 0

0 0 0 0 ¢n
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For the GLR detector, the process noise covariance matrix of the mismatched filter Q is set

to:
1 0 00
A
0 10 0 O
* F* *F*T d *
G- [ PoerToa =) )
0 0 0 O
and the initial covariance matrix of the state estimate is:
1 0 00
1
P*0)0) = 0 00
0 010
0 0 01

4.2. Single shot kill probability

Contour maps of the Single Shot Kill (SSK) probability using in the homing loop the Kalman/SF
filter and the guidance laws DGL/1 and DGL/0 are shown on Figure 1. The Figure 1 has been
obtained by a Monte-Carlo simulation composed of 120 000 runs. The guidance law DGL/1 shows
excellent performance except against evader maneuver switches happening during the last second
of the engagement. After a switch, the estimate of the evader acceleration requires some time
to converge to the new evader acceleration. During this period of time, the poor information on
the evader acceleration leads the pursuer on a suboptimal trajectory. Against switches happen-
ing during the last second of the engagement, the actuator of the pursuer doesn’t have enough
time to correct the pursuer trajectory after the evader acceleration estimate converges to the new
evader acceleration. The guidance law DGL/0 is more robust than DGL/1 with respect to the
evader acceleration switch time since the information about the evader acceleration is not used by
DGL/0. For most of the switch time however, the performance obtained DGL/0 are worse than
the performance achieved by DGL/1.

As previously noted, the performance of DGL/1 law is very sensitive to the evader acceleration
estimate. So, this guidance law is used to compare the performance of the GLR detector/estimator
with the Kalman/SF filter performance.

On Figure 2, the performance achieved using these estimators is illustrated for the case of a
switch happening 2 seconds before the end (tgos,, = 2 s). In this situation, the measurement noise
is the main contributor to the miss distance. After the switch is detected, the noise attenuation of
the GLR detector/estimator gets better than the noise attenuation of the Kalman/SF filter. This
explains the better performance obtained by using the GLR detector/estimator in this situation.
It’s interesting also to note that above a SSK probability of 0.95, the performance of the GLR
estimator/detector drops abruptly. Upon investigation of this phenomenon, it has been found that
the deterioration is due to a reinitialization error detected in a critical and narrow window of time.
This critical window of detection happens between the moment when the evader initiate a switch
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lethal radius [m]
lethal radius [m]

tgoy,, [s] tgoy,, [s]

Fig. 1.— SSK probability versus the required pursuer lethal radius and the evader maneuver switch
time using the Kalman/SF filter. On the left panel, the guidance law used is DGL/1, on the right
panel the guidance law used is DGL/0. From top to bottom, the SSK probability of each curve is
0.95 (line), 0.90 (dash), 0.50 (dash-dot), and 0.10 (dot), respectively.
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and the when moment the GLR could detect this switch. If the mismatched filter happens to be
reinitialized during this window of time, the likelihood ratio of the GLR test gets also reinitialized.
By reinitializing the likelihood ratio after the evader initiated a maneuver, the detector loses track
of what the evader is doing; i.e. none of the GLR signatures are going to match the signature in the
innovations coming from the mismatched filter after reinitialization. It happens that the detector
is reinitialized in this critical window of time to correct a reinitialization error. This is the event
responsible for the drop of performance above an SSK of 0.95. The solution to this problem is to
not reset the likelihood ratios upon a correction due to a reinitialization error but rather to correct
the likelihood ratios. Such a correction can be computed recursively but has not been implemented
yet in the current GLR detector/estimator.

On Figure 3, the switch time is now set to a time-to-go of 0.5 seconds. In this case, the GLR
detector/estimator is now worse than the Kalman/SF filter. Two reasons explain this behaviour.
First of all, by the time the evader maneuver is detected and the filter bandwidth is reduced, the
actuator command is already at maximum and there’s not enough time left for the actuator to
complete the correction of the pursuer trajectory. So, in such situation the performance of the
GLR should be similar to the performance of the Kalman/SF filter. However, upon the detection
of a change, the GLR detector not only reduces the bandwidth of the estimator, it also corrects the
state estimate of the estimator. Some of these state corrections are poor and they are responsible
for the deterioration of the GLR detector/estimator performance compares to the Kalman/SF filter
performance.

4.3. Comments

A GLR detector/estimator allows using effectively the information that upon initiation of a
maneuver by the evader during the last few seconds of the engagement, the evader is unlikely to
initiate a different maneuver afterward. Doing so would prevent the evader of significantly changing
it’s trajectory and it would then be less likely to avoid interception.

The mismatched filter used by the GLR detector/estimator must be design with care, because
it has been observed (not shown in this work) that the GLR detector/estimator performance are
highly dependent on the mismatched filter. This is to be expected since the GLR detector is
gathering all its information from the innovations generated by this single mismatched filter.
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Fig. 2.— SSK probability distribution versus the required pursuer lethal radius for a evader ma-
neuver switch time hapenning 2.0 secondes before the end. The distribution obtained using the
Kalman/SF filter line) and the GLR detector/estimator (dot) are shown. This figure has been
obtained by a Monte-Carlo simulation of 100 runs
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Fig. 3.— SSK probability distribution versus the required pursuer lethal radius for a evader ma-
neuver switch time happening 0.5 secondes before the end. The distribution obtained using the
Kalman/SF filter (line) and the GLR detector/estimator (dot) are shown. The figure has been
obtained by a Monte-Carlo simulation of 100 runs.
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5. Conclusion

The use of a GLR detector /estimator in the homing loop allows to improve the homing accuracy
provided that the evader final maneuver starts at the sufficiently large time before the end time.
Otherwise, the achieved performances using the GLR detector/estimator are similar or worse to
the Kalman/SF filter performance. Unfortunately, the evader final maneuvers heavily affecting
the pursuer performance (SSK probability) have an onset time close to the end time. So, the use
of a GLR detector/estimator in the homing loop doesn’t lead to an improvement of the pursuer
performance over the Kalman/SF filter against the worse evader maneuvers.

A way to improve the homing performance against the worse evader maneuvers could be to use
an estimator with a shorter delay of detection. However, a minimum delay of detection cannot be
avoided. An idea of the minimum delay of detection can be obtained by measuring the amount of
information available about the evader maneuver. The Kullback-Leibler divergence can be used as
a weak measure of this information. Looking at the behaviour of the Kullback-Leibler divergence
versus the detection delay of the GLR test (not shown in this work), it appears there’s not much
more room left to reliably improve the delay of detection. Moreover, it has been shown that the
delay of detection of the GLR test asymptotically reaches the optimal lower bound on detection
delay subject to the false alarm constraint as the false alarm constraint goes to zero (Lai & Shan
1999).

A different possibility to improve the overall performance of the homing loop would be to
match a robust GLR detector/estimator with an adaptive guidance law. Such an adaptive guid-
ance law would be cautious (“high bandwidth”) about its assumptions on the evader state before
the detection of a maneuver; after the detection, the guidance law would use more restrictive as-
sumptions (“low bandwidth”). This scheme effectively uses the assumption that the interval of
time between evader maneuver switches is bounded from below for both the estimator and the
guidance law. Such an adaptive guidance law could be a combination of the DGL/0 and DGL/1
law. Before the switch detection, DGL/0 is used; after the detection, DGL/1 is used. Another
more elegant possibility would be to use the delayed information guidance law proposed by Shinar
& Shima 2000. This guidance law includes a time constant representing the estimation error as a
time delay between the true and the estimated evader acceleration. This time constant could be
chosen to be large before detection of a change (the delayed guidance law will then tend toward
DGL/0) and be reduced after detection of a change. Work is currently being pursued into testing
this approach.
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Appendix

Let’s define a Kalman filter assuming that us(-) = 0. An asterisk denotes the equations of this
filter. Then, the state prediction and the corresponding innovation are expressed as:

#*(k+1k) = F[I—W(k)H)E* (k|k — 1) + FW(k)y(k) + Grui (k)
v(k+1) = y(k+1)— Hi*(k+ 1]k)

where W (k) is the Kalman gain. For ease of notation, let’s define

&(k) = F[I — W (k)H]

Similarly, we can defined a second filter with perfect information on ws:

G+ 1k) = ®(k)a(klk — 1) + FW(k)y(k) + Grui (k) + Gaus (k)
v(k+1) = ylk+1)— Hi(k + 1|k)

By combining the equations from the two filters, we can write:

v (k+1) = v(k+1)+HIzk+1)k) — 3*(k + 1|k)]
= ok + 1)+ H[®E)E(KkE — 1) — (k)2 (k|k — 1) + Goua(k)]

Let express the last equation as a function of an arbitrary time k; in the past:

k—ks—1 k k—m—1
v(k+1)+ H I @®-5) | Atks+1k)+ > | J] @k —3j) | Gaua(m)

m=Kks 7=0

v*(k+1)

Alks +1ks) = 2(ks + k) — 5" (ks + 1|k,)

Suppose A(ks + 1]ks) = 0 (i.e. no initialization error) to obtain:

k—m—1
v'(k+1)=vk+1)+ [Z ( H O(k j)Gguz(m)]

m=ks

The last equation can be rewritten in matrix form as:

V*(k,ks) = V(k,ks) + U(k, ks)Ua(k, ks)

with
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v*(k) v(k) us(k — 1)
V*(k k) = : , Vik k) = : . Us(k, k) = :
| v*(ks + 1) v(ks + 1) uz(ks)
[ HG, HOMK-1)G - Hk_]k‘io_2 (k—j—1)G |
i
U(k,ks) = 0
: : HG, H(ky +1)G
0 0 HGo ]

In the last equation, the sequence of innovation V has a gaussian distribution with zero mean
and Uj is a dynamic profile. Consequently, the sequence of signature T in the innovation sequence
V* is:

Y(k,ks) = U(k, ks)Ua(k, ks)



